File: step_nnmf.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (150 lines) | stat: -rw-r--r-- 5,378 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/nnmf.R
\name{step_nnmf}
\alias{step_nnmf}
\title{Non-Negative Matrix Factorization Signal Extraction}
\usage{
step_nnmf(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  num_comp = 2,
  num_run = 30,
  options = list(),
  res = NULL,
  columns = NULL,
  prefix = "NNMF",
  seed = sample.int(10^5, 1),
  keep_original_cols = FALSE,
  skip = FALSE,
  id = rand_id("nnmf")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{For model terms created by this step, what analysis role should
they be assigned? By default, the new columns created by this step from
the original variables will be used as \emph{predictors} in a model.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{num_comp}{The number of components to retain as new predictors.
If \code{num_comp} is greater than the number of columns or the number of
possible components, a smaller value will be used. If \code{num_comp = 0}
is set then no transformation is done and selected variables will
stay unchanged.}

\item{num_run}{A positive integer for the number of computations runs used
to obtain a consensus projection.}

\item{options}{A list of options to \code{nmf()} in the NMF package by way of the
\code{NNMF()} function in the \code{dimRed} package. \strong{Note} that the arguments
\code{data} and \code{ndim} should not be passed here, and that NMF's parallel
processing is turned off in favor of resample-level parallelization.}

\item{res}{The \code{NNMF()} object is stored
here once this preprocessing step has been trained by
\code{\link[=prep]{prep()}}.}

\item{columns}{A character string of variable names that will
be populated elsewhere.}

\item{prefix}{A character string that will be the prefix to the
resulting new variables. See notes below.}

\item{seed}{An integer that will be used to set the seed in isolation
when computing the factorization.}

\item{keep_original_cols}{A logical to keep the original variables in the
output. Defaults to \code{FALSE}.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_nnmf} creates a \emph{specification} of a recipe step
that will convert numeric data into one or more non-negative
components.

\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#deprecated}{\figure{lifecycle-deprecated.svg}{options: alt='[Deprecated]'}}}{\strong{[Deprecated]}}

Please use \code{\link[=step_nnmf_sparse]{step_nnmf_sparse()}} instead of this step function.
}
\details{
Non-negative matrix factorization computes latent components that
have non-negative values and take into account that the original data
have non-negative values.

The argument \code{num_comp} controls the number of components that
will be retained (the original variables that are used to derive
the components are removed from the data). The new components
will have names that begin with \code{prefix} and a sequence of
numbers. The variable names are padded with zeros. For example,
if \code{num < 10}, their names will be \code{NNMF1} - \code{NNMF9}.
If \code{num = 101}, the names would be \code{NNMF001} -
\code{NNMF101}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with column
\code{terms} (the selectors or variables selected) and the number of
components is returned.
}

\section{Case weights}{


The underlying operation does not allow for case weights.
}

\examples{
\dontshow{if (rlang::is_installed(c("modeldata", "ggplot2"))) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(biomass, package = "modeldata")

# rec <- recipe(HHV ~ ., data = biomass) \%>\%
#   update_role(sample, new_role = "id var") \%>\%
#   update_role(dataset, new_role = "split variable") \%>\%
#   step_nnmf(all_numeric_predictors(), num_comp = 2, seed = 473, num_run = 2) \%>\%
#   prep(training = biomass)
#
# bake(rec, new_data = NULL)
#
# library(ggplot2)
# bake(rec, new_data = NULL) \%>\%
#  ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) + geom_point()
\dontshow{\}) # examplesIf}
}
\seealso{
Other multivariate transformation steps: 
\code{\link{step_classdist}()},
\code{\link{step_depth}()},
\code{\link{step_geodist}()},
\code{\link{step_ica}()},
\code{\link{step_isomap}()},
\code{\link{step_kpca_poly}()},
\code{\link{step_kpca_rbf}()},
\code{\link{step_kpca}()},
\code{\link{step_mutate_at}()},
\code{\link{step_nnmf_sparse}()},
\code{\link{step_pca}()},
\code{\link{step_pls}()},
\code{\link{step_ratio}()},
\code{\link{step_spatialsign}()}
}
\concept{multivariate transformation steps}