File: step_sample.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (128 lines) | stat: -rw-r--r-- 4,046 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sample.R
\name{step_sample}
\alias{step_sample}
\title{Sample rows using dplyr}
\usage{
step_sample(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  size = NULL,
  replace = FALSE,
  skip = TRUE,
  id = rand_id("sample")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{Argument ignored; included for consistency with other step
specification functions.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{size}{An integer or fraction. If the value is within (0, 1),
\code{\link[dplyr:sample_n]{dplyr::sample_frac()}} is applied to the data. If an integer
value of 1 or greater is used, \code{\link[dplyr:sample_n]{dplyr::sample_n()}} is applied.
The default of \code{NULL} uses \code{\link[dplyr:sample_n]{dplyr::sample_n()}} with the size
of the training set (or smaller for smaller \code{new_data}).}

\item{replace}{Sample with or without replacement?}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = FALSE}.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_sample} creates a \emph{specification} of a recipe step
that will sample rows using \code{\link[dplyr:sample_n]{dplyr::sample_n()}} or
\code{\link[dplyr:sample_n]{dplyr::sample_frac()}}.
}
\section{Row Filtering}{


This step can entirely remove observations (rows of data), which can have
unintended and/or problematic consequences when applying the step to new
data later via \code{\link[=bake]{bake()}}. Consider whether \code{skip = TRUE} or
\code{skip = FALSE} is more appropriate in any given use case. In most instances
that affect the rows of the data being predicted, this step probably should
not be applied at all; instead, execute operations like this outside and
before starting a preprocessing \code{\link[=recipe]{recipe()}}.
}

\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{size}, \code{replace}, and \code{id} is returned.
}

\section{Case weights}{


This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in \link{case_weights} and the examples on
\code{tidymodels.org}.
}

\examples{

# Uses `sample_n`
recipe(~., data = mtcars) \%>\%
  step_sample(size = 1) \%>\%
  prep(training = mtcars) \%>\%
  bake(new_data = NULL) \%>\%
  nrow()

# Uses `sample_frac`
recipe(~., data = mtcars) \%>\%
  step_sample(size = 0.9999) \%>\%
  prep(training = mtcars) \%>\%
  bake(new_data = NULL) \%>\%
  nrow()

# Uses `sample_n` and returns _at maximum_ 20 samples.
smaller_cars <-
  recipe(~., data = mtcars) \%>\%
  step_sample() \%>\%
  prep(training = mtcars \%>\% slice(1:20))

bake(smaller_cars, new_data = NULL) \%>\% nrow()
bake(smaller_cars, new_data = mtcars \%>\% slice(21:32)) \%>\% nrow()
}
\seealso{
Other row operation steps: 
\code{\link{step_arrange}()},
\code{\link{step_filter}()},
\code{\link{step_impute_roll}()},
\code{\link{step_lag}()},
\code{\link{step_naomit}()},
\code{\link{step_shuffle}()},
\code{\link{step_slice}()}

Other dplyr steps: 
\code{\link{step_arrange}()},
\code{\link{step_filter}()},
\code{\link{step_mutate_at}()},
\code{\link{step_mutate}()},
\code{\link{step_rename_at}()},
\code{\link{step_rename}()},
\code{\link{step_select}()},
\code{\link{step_slice}()}
}
\concept{dplyr steps}
\concept{row operation steps}