File: rs.surv.rsadd.Rd

package info (click to toggle)
r-cran-relsurv 2.3-2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 916 kB
  • sloc: ansic: 1,223; cpp: 138; makefile: 2
file content (58 lines) | stat: -rw-r--r-- 2,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/rssurvrsadd.r
\name{rs.surv.rsadd}
\alias{rs.surv.rsadd}
\title{Compute a Relative Survival Curve from an additive relative survival model}
\usage{
rs.surv.rsadd(formula, newdata)
}
\arguments{
\item{formula}{a \code{rsadd} object (Implemented only for models fitted
with the codemax.lik (default) option.)}

\item{newdata}{a data frame with the same variable names as those that
appear in the \code{rsadd} formula.  a predicted curve for each individual
in this data frame shall be calculated}
}
\value{
a \code{survfit} object; see the help on \code{survfit.object} for
details.  The \code{survfit} methods are used for \code{print}, \code{plot},
\code{lines}, and \code{points}.
}
\description{
Computes the predicted relative survival function for an additive relative
survival model fitted with maximum likelihood.
}
\details{
Does not work with factor variables - you have to form dummy variables
before calling the rsadd function.
}
\examples{

data(slopop)
data(rdata)
#fit a relative survival model
fit <- rsadd(Surv(time,cens)~sex+age+year,rmap=list(age=age*365.241),
	ratetable=slopop,data=rdata,int=c(0:10,15))

#calculate the predicted curve for a male individual, aged 65, diagnosed in 1982
d <- rs.surv.rsadd(fit,newdata=data.frame(sex=1,age=65,year=as.Date("1982-01-01")))
#plot the curve (will result in a step function since the baseline is assumed piecewise constant)
plot(d,xscale=365.241)

#calculate the predicted survival curves for each individual in the data set
d <- rs.surv.rsadd(fit,newdata=rdata)
#calculate the average over all predicted survival curves
p.surv <- apply(d$surv,1,mean)
#plot the relative survival curve
plot(d$time/365.241,p.surv,type="b",ylim=c(0,1),xlab="Time",ylab="Relative survival")

}
\references{
Package. Pohar M., Stare J. (2006) "Relative survival analysis
in R." Computer Methods and Programs in Biomedicine, \bold{81}: 272--278
}
\seealso{
\code{survfit}, \code{survexp}
}
\keyword{survival}