1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/Rcode.r
\name{rs.zph}
\alias{rs.zph}
\title{Behaviour of Covariates in Time for Relative Survival Regression Models}
\usage{
rs.zph(fit, sc, transform = "identity", var.type = "sum")
}
\arguments{
\item{fit}{the result of fitting an additive relative survival model, using
the \code{rsadd}, \code{rsmul} or \code{rstrans} function.
In the case of multiplicative and transformation models the output is
identical to \code{cox.zph} function, except no test is performed.}
\item{sc}{partial residuals calculated by the \code{resid} function. This is
used to save time if several tests are to be calculated on these residuals
and can otherwise be omitted.}
\item{transform}{a character string specifying how the survival times should
be transformed. Possible values are \code{"km"}, \code{"rank"},
\code{"identity"} and \code{log}. The default is \code{"identity"}.}
\item{var.type}{a character string specifying the variance used to scale the
residuals. Possible values are \code{"each"}, which estimates the variance
for each residual separately, and \code{sum}(default), which assumes the
same variance for all the residuals.}
}
\value{
an object of class \code{rs.zph}. This function would usually be
followed by a plot of the result. The plot gives an estimate of the
time-dependent coefficient \code{beta(t)}. If the proportional hazards
assumption is true, \code{beta(t)} will be a horizontal line.
}
\description{
Calculates the scaled partial residuals of a relative survival model
(\code{rsadd}, \code{rsmul} or \code{rstrans})
}
\examples{
data(slopop)
data(rdata)
fit <- rsadd(Surv(time,cens)~sex,rmap=list(age=age*365.241),
ratetable=slopop,data=rdata,int=5)
rszph <- rs.zph(fit)
plot(rszph)
}
\references{
Goodness of fit: Stare J.,Pohar Perme M., Henderson R. (2005)
"Goodness of fit of relative survival models." Statistics in Medicine,
\bold{24}: 3911--3925.
Package. Pohar M., Stare J. (2006) "Relative survival analysis in R."
Computer Methods and Programs in Biomedicine, \bold{81}: 272--278
Relative survival: Pohar, M., Stare, J. (2007) "Making relative survival
analysis relatively easy." Computers in biology and medicine, \bold{37}:
1741--1749.
}
\seealso{
\code{\link{rsadd}}, \code{rsmul}, \code{rstrans},
\code{\link{resid}}, \code{\link[survival:cox.zph]{survival::cox.zph}}.
}
\keyword{survival}
|