File: knitr-engine.R

package info (click to toggle)
r-cran-reticulate 1.41.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,088 kB
  • sloc: cpp: 5,154; python: 620; sh: 13; makefile: 2
file content (822 lines) | stat: -rw-r--r-- 26,604 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

.engine_context <- new.env(parent = emptyenv())

#' A reticulate Engine for Knitr
#'
#' This provides a `reticulate` engine for `knitr`, suitable for usage when
#' attempting to render Python chunks. Using this engine allows for shared state
#' between Python chunks in a document -- that is, variables defined by one
#' Python chunk can be used by later Python chunks.
#'
#' The engine can be activated by setting (for example)
#'
#' ```
#' knitr::knit_engines$set(python = reticulate::eng_python)
#' ```
#'
#' Typically, this will be set within a document's setup chunk, or by the
#' environment requesting that Python chunks be processed by this engine.
#' Note that `knitr` (since version 1.18) will use the `reticulate` engine by
#' default when executing Python chunks within an R Markdown document.
#'
#' @param options
#'   Chunk options, as provided by `knitr` during chunk execution.
#'
#' @section Supported `knitr` chunk options:
#'
#' For most options, reticulate's python engine behaves the same as the default
#' R engine included in knitr, but they might not support all the same features.
#' Options in *italic* are equivalent to knitr, but with modified behavior.
#'
#' - *`eval`* (`TRUE`, logical): If `TRUE`, all expressions in the chunk are evaluated. If `FALSE`,
#'   no expression is evaluated. Unlike knitr's R engine, it doesn't support numeric
#'   values indicating the expressions to evaluate.
#' - *`echo`* (`TRUE`, logical): Whether to display the source code in the output document. Unlike
#'   knitr's R engine, it doesn't support numeric values indicating the expressions
#'   to display.
#' - `results` (`'markup'`, character): Controls how to display the text results. Note that this option only
#'   applies to normal text output (not warnings, messages, or errors). The behavior
#'   should be identical to knitr's R engine.
#' - `collapse` (`FALSE`, logical): Whether to, if possible, collapse all the source and output blocks
#'   from one code chunk into a single block (by default, they are written to separate blocks).
#'   This option only applies to Markdown documents.
#' - `error` (`TRUE`, logical): Whether to preserve errors. If `FALSE` evaluation stops
#'   on errors. (Note that RMarkdown sets it to `FALSE`).
#' - *`warning`* (`TRUE`, logical): Whether to preserve warnings in the output. If FALSE, all warnings
#'   will be suppressed. Doesn't support indices.
#' - `include` (`TRUE`, logical): Whether to include the chunk output in the output document.
#'   If `FALSE`, nothing will be written into the output document, but the code is still
#'   evaluated and plot files are generated if there are any plots in the chunk, so you
#'   can manually insert figures later.
#' - `dev`: The graphical device to generate plot files. See knitr documentation for
#'    additional information.
#' - `base.dir` (`NULL`; character): An absolute directory under which the plots
#'    are generated.
#' - `strip.white` (TRUE; logical): Whether to remove blank lines in the beginning
#'   or end of a source code block in the output.
#' - `dpi` (72; numeric): The DPI (dots per inch) for bitmap devices (dpi * inches = pixels).
#' - `fig.width`, `fig.height` (both are 7; numeric): Width and height of the plot
#'   (in inches), to be used in the graphics device.
#' - `label`: The chunk label for each chunk is assumed to be unique within the
#'   document. This is especially important for cache and plot filenames, because
#'   these filenames are based on chunk labels. Chunks without labels will be
#'   assigned labels like unnamed-chunk-i, where i is an incremental number.
#'
#' ### Python engine only options
#'
#' - **`jupyter_compat`** (FALSE, logical): If `TRUE` then, like in Jupyter notebooks,
#'   only the last expression in the chunk is printed to the output.
#' - **`out.width.px`**, **`out.height.px`** (810, 400, both integers): Width and
#'   height of the plot in the output document, which can be different with its
#'   physical `fig.width` and `fig.height`, i.e., plots can be scaled in the output
#'   document. Unlike knitr's `out.width`, this is always set in pixels.
#' - **`altair.fig.width`**, **`altair.fig.height`**: If set, is used instead of
#'   `out.width.px` and `out.height.px` when writing Altair charts.
#'
#' @export
eng_python <- function(options) {

  # check for unsupported knitr options
  options <- eng_python_validate_options(options)

  # when 'eval = FALSE', we can just return the source code verbatim
  # (skip any other per-chunk work)
  if (identical(options$eval, FALSE)) {
    outputs <- list()
    if (!identical(options$echo, FALSE))
      outputs[[1]] <- structure(list(src = options$code), class = "source")
    wrap <- getOption("reticulate.engine.wrap", eng_python_wrap)
    return(wrap(outputs, options))
  }

  engine.path <- if (is.list(options[["engine.path"]]))
    options[["engine.path"]][["python"]]
  else
    options[["engine.path"]]

  # if the user has requested a custom Python, attempt
  # to honor that request (warn if Python already initialized
  # to a different version)
  if (is.character(engine.path)) {

    # if Python has not yet been loaded, then try
    # to load it with the requested version of Python
    if (!py_available())
      use_python(engine.path, required = TRUE)

    # double-check that we've loaded the requested Python
    conf <- py_config()
    requestedPython <- normalizePath(engine.path)
    actualPython <- normalizePath(conf$python)
    if (requestedPython != actualPython) {
      fmt <- "cannot honor request to use Python %s [%s already loaded]"
      msg <- sprintf(fmt, requestedPython, actualPython)
      warning(msg, immediate. = TRUE, call. = FALSE)
    }
  }

  # environment tracking the labels assigned to newly-created altair charts
  .engine_context$altair_ids <- new.env(parent = emptyenv())

  # a list of pending plots / outputs
  .engine_context$pending_plots <- stack()

  eng_python_initialize(options = options, envir = environment())

  # helper function for extracting range of code, dropping blank lines
  extract <- function(code, range) {
    snippet <- code[range[1]:range[2]]
    paste(snippet, collapse = "\n")
  }

  # extract the code to be run -- we'll attempt to run the code line by line
  # and detect changes so that we can interleave code and output (similar to
  # what one sees when executing an R chunk in knitr). to wit, we'll do our
  # best to emulate the return format of 'evaluate::evaluate()'
  code <- options$code
  n <- length(code)
  if (n == 0)
    return(list())

  # use 'ast.parse()' to parse Python code and collect line numbers, so we
  # can split source code into statements
  ast <- import("ast", convert = TRUE)
  pasted <- paste(code, collapse = "\n")
  parsed <- tryCatch(ast$parse(pasted, "<string>"), error = identity)
  if (inherits(parsed, "error")) {
    error <- reticulate::py_last_error()
    if (identical(options$error, TRUE)) {
      outputs <- list(
        structure(list(src = code), class = "source"),
        paste(error$value, collapse = "\n")
      )
      wrap <- getOption("reticulate.engine.wrap", eng_python_wrap)
      return(wrap(outputs, options))
    } else {
      stop(error$value, call. = FALSE)
    }
  }

  # iterate over top-level nodes and extract line numbers
  lines <- vapply(parsed$body, function(node) {
    if(py_version() >= "3.8")
      return(as_r_value(py_get_attr(node, "end_lineno")))
    # `end_lineno` attribute was introduced in python3.8
    # in earlier versions, fallback to using just lineno
    # note, this can result in comments being attached to
    # the wrong code chunk

    if (py_has_attr(node, "decorator_list") && length(node$decorator_list)) {
      out <- py_get_attr(node$decorator_list[[1]], "lineno")
    } else {
      out <- py_get_attr(node, "lineno")
    }

    as_r_value(out)
  }, integer(1))

  # it's possible for multiple statements to live on the
  # same line (e.g. `print("a"); print("b")`) so only keep
  # uniques
  lines <- unique(lines)

  # convert from lines to ranges (be sure to handle the zero-length case)
  ranges <- list()
  if (length(lines)) {

    if(py_version() >= "3.8") {
      # end_lineno attr only introduced in 3.8
      ends <- lines
      starts <- c(1L, ends[-length(ends)] + 1L)
    } else {
      starts <- lines
      ends <- c(lines[-1] - 1, length(code))
    }
    ranges <- mapply(c, starts, ends, SIMPLIFY = FALSE)
  }

  # Stash some options.
  is_hold <- identical(options$results, "hold")
  is_include <- isTRUE(options$include)
  jupyter_compat <- isTRUE(options$jupyter_compat)

  # line index from which source should be emitted
  pending_source_index <- 1

  # whether an error occurred during execution
  had_error <- FALSE

  # actual outputs to be returned to knitr
  outputs <- stack()

  # 'held' outputs, to be appended at the end (for results = "hold")
  held_outputs <- stack()

  # Outputs to be appended to; these depend on the "hold" option.
  outputs_target <- if (is_hold) held_outputs else outputs

  # synchronize state R -> Python
  eng_python_synchronize_before(options)

  # determine if we should capture errors
  # (don't capture errors during knit)
  capture_errors <-
    identical(options$error, TRUE) ||
    identical(getOption("knitr.in.progress", default = FALSE), FALSE)

  if(isFALSE(options$warning)) {
    py_catch_warnings_ctxt <-
      # need to set record = TRUE, otherwise custom implementations of
      # `warning.showwarning()` leak warnings out of the context.
      import("warnings", convert = FALSE)$catch_warnings(record = TRUE)
    py_catch_warnings_ctxt$`__enter__`()
    on.exit({
      py_catch_warnings_ctxt$`__exit__`(NULL, NULL, NULL)
    }, add = TRUE)
  }

  for (i in seq_along(ranges)) {

    # extract range
    range <- ranges[[i]]
    last_range <- i == length(ranges)

    # extract code to be run
    snippet <- extract(code, range)

    # clear the last value object (so we can tell if it was updated)
    py_compile_eval("'__reticulate_placeholder__'")

    # use trailing semicolon to suppress output of return value
    suppress <- grepl(";\\s*$", snippet) || (jupyter_compat & !last_range)
    compile_mode <- if (suppress) "exec" else "single"

    # run code and capture output
    captured_stdout <- if (capture_errors) {
      tryCatch(
        py_compile_eval(snippet, compile_mode),
        error = function(e) {

          # if the chunk option is error = FALSE (the default).
          # we'll need to bail and not evaluate to the next python expression.
          if (identical(options$error, FALSE))
            had_error <- TRUE

          # format the exception object
          etype <- py_get_attr(e, "__class__")
          traceback <- import("traceback")
          paste0(traceback$format_exception_only(etype, e),
                 collapse = "")
        }
      )

    }
    else
      py_compile_eval(snippet, compile_mode)

    # handle matplotlib plots and other special output
    captured <- eng_python_autoprint(
      captured = captured_stdout,
      options  = options
    )

    # A trailing ';' suppresses output.
    # In jupyter mode, only the last expression in a chunk has repr() output.
    if (suppress)
      captured <- captured_stdout

    # emit outputs if we have any
    has_outputs <-
      !.engine_context$pending_plots$empty() ||
      !identical(captured, "")

    if (has_outputs) {

      # append pending source to outputs (respecting 'echo' option)
      if (!identical(options$echo, FALSE) && !is_hold) {
        extracted <- extract(code, c(pending_source_index, range[2]))
        if(!identical(options$collapse, TRUE) &&
           identical(options$strip.white, TRUE)) {
          extracted <- sub("^\\n+", "", sub("\\n+$", "", extracted))
          # trimws(whitespace = ) requires R 3.6
          # extracted <- trimws(extracted, whitespace = "[\n]")
        }
        output <- structure(list(src = extracted), class = "source")
        outputs$push(output)
      }

      # append captured outputs (respecting 'include' option)
      if (is_include) {
        # append captured output
        if (!identical(captured, ""))
          outputs_target$push(captured)

        # append captured images / figures
        for (plot in .engine_context$pending_plots$data())
          outputs_target$push(plot)
        .engine_context$pending_plots$clear()
      }

      # update pending source range
      pending_source_index <- range[2] + 1

      # bail if we had an error with 'error=FALSE'
      if (had_error && identical(options$error, FALSE))
        break

    }
  }

  # if we have leftover input, add that now
  has_leftovers <-
    !had_error &&
    !identical(options$echo, FALSE) &&
    !identical(options$results, "hold") &&
    pending_source_index <= n

  if (has_leftovers) {
    leftover <- extract(code, c(pending_source_index, n))
    output <- structure(list(src = leftover), class = "source")
    outputs$push(output)
  }

  # check if we need to call matplotlib.pyplot.show()
  # for any pending undisplayed plots
  if(isTRUE(.globals$matplotlib_initialized)) {
    plt <- import("matplotlib.pyplot")
    if(length(plt$get_fignums()))
      plt$show()
  }

  for (plot in .engine_context$pending_plots$data())
    outputs_target$push(plot)
  .engine_context$pending_plots$clear()


  # if we were using held outputs, we just inject the source in now
  if (is_hold) {
    output <- structure(list(src = code), class = "source")
    outputs$push(output)
  }

  # if we had held outputs, add those in now (merging text output as appropriate)
  text_output <- character()

  held_outputs <- held_outputs$data()
  for (i in seq_along(held_outputs)) {

    output <- held_outputs[[i]]
    if (!is.object(output) && is.character(output)) {

      # merge text output and save for later
      text_output <- c(text_output, held_outputs[[i]])

    } else {

      # add in pending text output
      if (length(text_output)) {
        output <- paste(text_output, collapse = "")
        outputs$push(output)
        text_output <- character()
      }

      # add in this piece of output
      outputs$push(held_outputs[[i]])
    }

  }

  # if we have any leftover held output, add in now
  if (length(text_output)) {
    output <- paste(text_output, collapse = "")
    outputs$push(output)
  }

  eng_python_synchronize_after()

  wrap <- getOption("reticulate.engine.wrap", eng_python_wrap)
  wrap(outputs$data(), options)

}

eng_python_initialize <- function(options, envir) {

  if (is.character(options$engine.path))
    use_python(options$engine.path[[1]])

  ensure_python_initialized()
  eng_python_initialize_hooks(options, envir)

}

eng_python_knit_include_graphics <-
  function(options, suffix = NULL, write_figure = function(path) NULL) {

  # ensure that both the figure file saving code, as well as
  # knitr::include_graphics(), are run with the correct working directory.

  # we need to work in either base.dir or output.dir, depending
  # on which of the two has been requested by the user. (note
  # that output.dir should always be set)
  dir <-
    knitr::opts_knit$get("base.dir") %||%
    knitr::opts_knit$get("output.dir")

  # move to the requested directory
  dir.create(dir, recursive = TRUE, showWarnings = FALSE)
  owd <- setwd(dir)
  on.exit(setwd(owd), add = TRUE)

  # construct plot path
  plot_counter <- yoink("knitr", "plot_counter")
  number <- plot_counter()
  paths <- knitr::fig_path(
    suffix  = suffix %||% options$dev,
    options = options,
    number  = number
  )

  for (path in paths) {
    # ensure parent path exists
    dir.create(dirname(path), recursive = TRUE, showWarnings = FALSE)

    # write figures
    write_figure(path)
  }

  # include the first requested path
  knitr::include_graphics(paths[1])

}

eng_python_matplotlib_show <- function(plt, options) {

  on.exit(plt$close())

  # save figure file, return knitr::include_graphics() wrapped figure path
  eng_python_knit_include_graphics(
    options, write_figure = function(path) {
      # save the current figure to all requested devices
      plt$savefig(path, dpi = options$dpi)
    }
  )

}

eng_python_initialize_hooks <- function(options, envir) {

  # set up hooks for matplotlib modules
  matplotlib_modules <- c(
    "matplotlib.artist",
    "matplotlib.pyplot",
    "matplotlib.pylab"
  )

  for (module in matplotlib_modules) {
    py_register_load_hook(module, function(...) {
      eng_python_initialize_matplotlib(options, envir)
    })
  }

  # set up hooks for plotly modules
  plotly_modules <- c(
    "plotly.io",
    "plotlyjs"
  )

  for (module in plotly_modules) {
    py_register_load_hook(module, function(...) {
      eng_python_initialize_plotly(options, envir)
    })
  }

}

eng_python_matplotlib_backend <- function() {

  # allow override, just in case
  envvars <- c("RETICULATE_MPLBACKEND", "MPLBACKEND")
  for (envvar in envvars) {
    override <- Sys.getenv(envvar, unset = NA)
    if (!is.na(override))
      return(override)
  }

  # if we're currently running testthat tests, force an 'agg' backend
  testthat <- Sys.getenv("TESTTHAT", unset = NA)
  if (identical(testthat, "true"))
    return("agg")

  # in RStudio Desktop, enforce a non-Qt matplotlib backend
  #
  # this is mainly important for older releases of RStudio which were built
  # using Qt, since some conda installations might also bundle + use their own
  # versions of Qt, and those Qt installations could be incompatible.
  #
  # newer versions of RStudio set the matplotlib backend to 'agg' more
  # explicitly, so this branch could likely be removed in a future reticulate release
  if (is_rstudio_desktop())
    return("agg")

  # prefer using the agg backend in non-interactive environments
  # (matplotlib might prefer using the tkAgg backend, but we've seen
  # issues when trying to use in some environments, e.g. Windows)
  #
  # https://github.com/rstudio/rstudio/issues/13840
  if (!interactive())
    return("agg")

  # otherwise, use whatever backend was already configured
  ""
}

eng_python_initialize_matplotlib <- function(options, envir) {

  # early exit if we already initialized
  # (this onload hook is registered for multiple matplotlib submodules)
  if (identical(.globals$matplotlib_initialized, TRUE))
    return(TRUE)

  backend <- eng_python_matplotlib_backend()
  if (nzchar(backend)) {

    matplotlib <- import("matplotlib", convert = TRUE)

    # check to see if a backend has already been initialized. if so, we
    # need to switch backends; otherwise, we can simply request to use a
    # specific one when the backend is initialized later
    sys <- import("sys", convert = FALSE)
    if ("matplotlib.backends" %in% names(sys$modules)) {
      matplotlib$pyplot$switch_backend(backend)
    } else {
      version <- numeric_version(matplotlib$`__version__`)
      if (version < "3.3.0")
        matplotlib$use(backend, warn = FALSE, force = TRUE)
      else
        matplotlib$use(backend, force = TRUE)
    }
  }

  # double-check that we can load 'pyplot' (this can fail if matplotlib
  # is installed but is initialized to a backend missing some required components)
  if (!py_module_available("matplotlib.pyplot"))
    return()

  plt <- import("matplotlib.pyplot", convert = FALSE)

  # set up figure dimensions
  plt$rc("figure", figsize = tuple(options$fig.width, options$fig.height))

  # override show implementation
  plt$show <- function(...) {

    # get current chunk options
    options <- knitr::opts_current$get()

    # call hook to generate plot
    hook <- getOption("reticulate.engine.matplotlib.show", eng_python_matplotlib_show)
    graphic <- hook(plt, options)

    # update set of pending plots
    .engine_context$pending_plots$push(graphic)

    # return None to ensure no printing of output here (just inclusion of
    # plot as a side effect)
    py_none()

  }

  .globals$matplotlib_initialized <- TRUE

}

eng_python_initialize_plotly <- function(options, envir) {

  # mark initialization done
  if (identical(.globals$plotly_initialized, TRUE))
    return(TRUE)

  .globals$plotly_initialized <- TRUE

  # override the figure 'show' method to just return the plot object itself
  # the auto-printer will then handle rendering the image as appropriate
  io <- import("plotly.io", convert = FALSE)
  io$show <- function(self, ...) self

  renderers <- io$renderers
  if (!py_bool(renderers$default))
    renderers$default <- "plotly_mimetype+notebook"

}

# synchronize objects R -> Python
eng_python_synchronize_before <- function(options) {
  py_inject_r()
  if(isTRUE(.globals$matplotlib_initialized)) {

    # set up figure dimensions
    plt <- import("matplotlib.pyplot")
    plt$rc("figure", figsize = tuple(options$fig.width, options$fig.height))
  }
}

# synchronize objects Python -> R
eng_python_synchronize_after <- function() {}

eng_python_wrap <- function(outputs, options) {
  knitr::engine_output(options, out = outputs)
}

eng_python_validate_options <- function(options) {

  # warn about unsupported numeric options and convert to TRUE
  no_numeric <- c("eval", "echo", "warning")
  for (option in no_numeric) {
    if (is.numeric(options[[option]])) {
      fmt <- "numeric '%s' chunk option not supported by reticulate engine"
      msg <- sprintf(fmt, option)
      warning(msg, call. = FALSE)
      options[[option]] <- TRUE
    }
  }

  options
}

eng_python_is_matplotlib_output <- function(value) {

  matplotlib_plot_types <- c("matplotlib.artist.Artist",
                             "matplotlib.container.Container",
                             "matplotlib.image.AxesImage",
                             "matplotlib.image.BboxImage",
                             "matplotlib.image.FigureImage",
                             "matplotlib.image.NonUniformImage",
                             "matplotlib.image.PcolorImage")

  if (inherits(value, c("python.builtin.tuple", "python.builtin.list")) &&
      length(value) > 0L) {

    # some functions returned list-"boxed" images, like [<img>]
    if (inherits(py_get_item(value, 0L), matplotlib_plot_types))
      return(TRUE)

    # plt.hist returns (<np.array>, <np.array>, <img>)
    if(length(value) > 1L &&
       inherits(py_get_item(value, length(value)-1L), matplotlib_plot_types))
      return(TRUE)
  }

  inherits(value, matplotlib_plot_types)
}

eng_python_is_seaborn_output <- function(value) {
  inherits(value, "seaborn.axisgrid.Grid")
}

eng_python_is_plotly_plot <- function(value) {
  inherits(value, "plotly.basedatatypes.BaseFigure")
}

eng_python_is_altair_chart <- function(value) {

  # support different API versions, assuming that the class name
  # otherwise remains compatible
  classes <- class(value)
  pattern <- "^altair\\.vegalite\\.v[[:digit:]]+\\.api\\.(HConcat|VConcat|Layer|Repeat|Facet)?Chart$"
  any(grepl(pattern, classes))

}

eng_python_altair_chart_id <- function(options, ids) {

  label <- options$label
  components <- c(label, "altair-viz")
  if (exists(label, envir = ids)) {
    id <- get(label, envir = ids)
    components <- c(components, id + 1)
    assign(label, id + 1, envir = ids)
  } else {
    assign(label, 1L, envir = ids)
  }

  paste(components, collapse = "-")

}

eng_python_autoprint <- function(captured, options) {

  # bail if no new value was produced by interpreter
  value <- py_last_value()
  if (py_is_none(value))
    return(captured)

  # ignore placeholder outputs
  if (inherits(value, "python.builtin.str")) {
    contents <- py_to_r(value)
    if (identical(contents, "__reticulate_placeholder__"))
      return(captured)
  }

  # check if output format is html
  isHtml <- knitr::is_html_output()

  if (eng_python_is_matplotlib_output(value)) {
    # We handle pending Matplotlib plots with fignums check later.

    # Always suppress Matplotlib reprs
    return("")

  } else if (eng_python_is_seaborn_output(value)) {

    # get figure path
    included_path <- eng_python_knit_include_graphics(
      options, write_figure = function(path) {
      value$savefig(path)
  })

    .engine_context$pending_plots$push(included_path)
    return("")

  } else if (inherits(value, "pandas.core.frame.DataFrame")) {

    return(captured)

  } else if (isHtml && py_has_method(value, "_repr_html_")) {

    py_capture_output({
      data <- as_r_value(value$`_repr_html_`())
    })
    .engine_context$pending_plots$push(knitr::raw_html(data))
    return("")

  } else if (eng_python_is_plotly_plot(value) &&
             py_module_available("psutil") &&
             py_module_available("kaleido")) {

    included_path <- eng_python_knit_include_graphics(
      options, write_figure = function(path) {
        value$write_image(
          file   = path,
          width  = options$out.width.px,
          height = options$out.height.px
        )
      }
    )
    .engine_context$pending_plots$push(included_path)
    return("")

  } else if (eng_python_is_altair_chart(value)) {

    # set width and height if it's not already set
    # This only applies to Chart objects, compound charts like HConcatChart
    # don't have a 'width' or 'height' property attribute.
    # TODO: add support for propagating width/height options from knitr to
    # altair compound charts
    width <- py_get_attr(value, "width", TRUE)
    if (!is.null(options$altair.fig.width)) {
      value <- value$properties(width = options$altair.fig.width)
    }
    height <- py_get_attr(value, "height", TRUE)
    if (!is.null(options$altair.fig.height)) {
      value <- value$properties(height = options$altair.fig.height)
    }

    # set a unique id (used for div container for figure)
    id <- eng_python_altair_chart_id(options, .engine_context$altair_ids)

    # convert to HTML or PNG as appropriate
    if (isHtml) {
      data <- as_r_value(value$to_html(output_div = id))
      .engine_context$pending_plots$push(knitr::raw_html(data))
    } else {

      included_path <- eng_python_knit_include_graphics(
        options, write_figure = function(path) {
          value$save(path)
        }
      )
      .engine_context$pending_plots$push(included_path)
    }

    return("")

  } else if (py_has_method(value, "_repr_markdown_")) {

    data <- as_r_value(value$`_repr_markdown_`())
    .engine_context$pending_plots$push(knitr::asis_output(data))
    return("")

  } else if (py_has_method(value, "to_html")) {

    data <- as_r_value(value$to_html())
    .engine_context$pending_plots$push(knitr::raw_html(data))
    return("")

  } else {

    # nothing special to do
    return(captured)

  }

}