1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
#' Configure a Python Environment
#'
#' Configure a Python environment, satisfying the Python dependencies of any
#' loaded \R packages.
#'
#' Normally, this function should only be used by package authors, who want
#' to ensure that their package dependencies are installed in the active
#' Python environment. For example:
#'
#' ```
#' .onLoad <- function(libname, pkgname) {
#' reticulate::configure_environment(pkgname)
#' }
#' ```
#'
#' If the Python session has not yet been initialized, or if the user is not
#' using the default Miniconda Python installation, no action will be taken.
#' Otherwise, `reticulate` will take this as a signal to install any required
#' Python dependencies into the user's Python environment.
#'
#' If you'd like to disable `reticulate`'s auto-configure behavior altogether,
#' you can set the environment variable:
#'
#' ```
#' RETICULATE_AUTOCONFIGURE = FALSE
#' ```
#'
#' e.g. in your `~/.Renviron` or similar.
#'
#' Note that, in the case where the Python session has not yet been initialized,
#' `reticulate` will automatically ensure your required Python dependencies
#' are installed after the Python session is initialized (when appropriate).
#'
#' @param package The name of a package to configure. When `NULL`, `reticulate`
#' will instead look at all loaded packages and discover their associated
#' Python requirements.
#'
#' @param force Boolean; force configuration of the Python environment? Note
#' that `configure_environment()` is a no-op within non-interactive \R
#' sessions. Use this if you require automatic environment configuration, e.g.
#' when testing a package on a continuous integration service.
#'
#' @export
configure_environment <- function(package = NULL, force = FALSE) {
# no-op when Python has not yet been initialized
if (!is_python_initialized())
return(FALSE)
# allow opt-out through envvar
auto <- Sys.getenv("RETICULATE_AUTOCONFIGURE", unset = "TRUE")
if (auto %in% c("FALSE", "False", "0"))
return(FALSE)
# disallow in non-interactive R sessions unless forced
# (even if force is set, do not allow unless user has explicitly
# promised they're not on CRAN)
ok <- interactive() || (force && identical(Sys.getenv("NOT_CRAN"), "true"))
if (!ok)
return(FALSE)
# disallow environment configuration when not using a Python environment
config <- py_config()
root <- config$prefix
ok <- is_virtualenv(root) || is_condaenv(root)
if (!ok)
return(FALSE)
# find Python requirements
reqs <- python_package_requirements(package)
if (length(reqs) == 0)
return(FALSE)
pkgreqs <- unlist(
lapply(reqs, `[[`, "packages"),
recursive = FALSE,
use.names = FALSE
)
# check for incompatible package requests
df <- do.call(rbind.data.frame, pkgreqs)
splat <- split(df, df$package)
pkgreqs <- enumerate(splat, function(pkg, requests) {
rownames(requests) <- NULL
# check for explicit requests by version
explicit <- requests[!is.na(requests$version), ]
if (nrow(explicit) == 0)
return(requests[1, ])
# check for single explicit version request
n <- length(unique(requests$version))
if (n == 1)
return(explicit[1, ])
# otherwise warn and sort
explicit <- explicit[order(explicit$version, decreasing = TRUE), ]
output <- capture.output(format(explicit))
fmt <- "WARNING: incompatible requirements for package '%s' detected!"
messagef(fmt, pkg)
output <- capture.output(format(requests))
message(paste(output, collapse = "\n"))
selected <- explicit[1, ]
fmt <- "WARNING: %s [%s] will be used."
messagef(fmt, selected$package, selected$version)
selected
})
# split into packages to be installed with pip vs. conda
# we'll diff the requested packages against the currently-installed
# packages and only install packages which truly need to be updated
pip_installed_packages <- NULL
conda_installed_packages <- NULL
pip_packages <- character()
conda_packages <- character()
for (req in pkgreqs) {
# if no 'pip' requirement was specified, assume pip
pip <- req$pip
if (is.null(pip) || is.na(pip))
pip <- TRUE
# if this is a virtual environment, we cannot use conda
if (nzchar(config$virtualenv %||% ""))
pip <- TRUE
# normalize version request
version <- req$version
if (is.null(version) || is.na(version))
version <- NULL
components <- c(req$package, version)
if (pip) {
# read installed packages lazily
if (is.null(pip_installed_packages)) {
pip_installed_packages <- pip_freeze(python = config$python)
}
# construct requirement string
requirement <- paste(components, collapse = "==")
# check to see if we satisfy this requirement already
satisfied <-
requirement %in% pip_installed_packages$requirement ||
requirement %in% pip_installed_packages$package
if (satisfied)
next
pip_packages[[length(pip_packages) + 1]] <- requirement
} else {
# read installed packages lazily
envpath <- dirname(dirname(config$python))
conda <- conda_binary()
if (is.null(conda_installed_packages)) {
conda_installed_packages <- conda_list_packages(
envname = envpath,
conda = conda
)
}
# construct requirement string
requirement <- paste(components, collapse = "=")
# check to see if we satisfy this requirement already
satisfied <-
requirement %in% conda_installed_packages$requirement ||
requirement %in% conda_installed_packages$package
if (satisfied)
next
conda_packages[[length(conda_packages) + 1]] <- requirement
}
}
if (length(pip_packages) || length(conda_packages)) {
fmt <- "Configuring package '%s': please wait ..."
messagef(fmt, package)
if (length(pip_packages))
py_install(pip_packages, pip = TRUE)
if (length(conda_packages))
py_install(conda_packages, pip = FALSE)
message("Done!")
}
TRUE
}
python_package_requirements <- function(packages = NULL) {
packages <- packages %||% loadedNamespaces()
names(packages) <- packages
reqs <- lapply(packages, function(package) {
tryCatch(
python_package_requirements_find(package),
error = function(e) { warning(e); NULL }
)
})
Filter(Negate(is.null), reqs)
}
python_package_requirements_find <- function(package) {
descpath <- system.file("DESCRIPTION", package = package)
desc <- read.dcf(descpath, all = TRUE)
entry <- desc[["Config/reticulate"]]
if (is.null(entry))
return(NULL)
spec <- eval(parse(text = entry), envir = baseenv())
fields <- c("package", "version", "pip")
spec$packages <- lapply(spec$packages, function(req) {
if (is.null(req$package)) {
warning("invalid spec provided by package '%s'", package)
return(NULL)
}
data.frame(
source = package,
package = as.character(req[["package"]]),
version = as.character(req[["version"]] %||% NA),
pip = as.logical(req[["pip"]] %||% NA),
stringsAsFactors = FALSE
)
})
spec
}
|