1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
|
#' @export
print.python.builtin.object <- function(x, ...) {
formatted <- c(
py_repr(x),
py_format_signature(x)
)
writeLines(formatted)
invisible(x)
}
py_format_signature <- function(x, ...) {
if (!py_is_callable(x))
return(NULL)
inspect <- import("inspect")
get_formatted_signature <- function(x, drop_first = FALSE) {
tryCatch({
sig <- inspect$signature(x)
if (drop_first) {
# i.e., drop first positional arg, most typically: 'self'
#
# We only need to do this if inspect.signature() errored on the the
# callable itself, but succeeded on callable.__init__. This can happen
# for some built-in-C class where methods are slot wrappers.
# E.g., builtin exceptions like 'RuntimeError'.
sig <- inspect$Signature(
parameters = iterate(sig$parameters$values())[-1],
return_annotation = sig$return_annotation
)
}
formatted <- py_str_impl(sig)
# split long signatures across multiple lines, so they're readable
# if (py_len(sig$parameters) > 5L) {
if (nchar(formatted) > 60) {
for (formatted_arg in iterate(sig$parameters$values(), py_str_impl))
formatted <- sub(formatted_arg,
paste0("\n ", formatted_arg),
formatted, fixed = TRUE)
formatted <- sub(", /,", ",\n /,", formatted, fixed = TRUE) # positional only separator
formatted <- sub(", *,", ",\n *,", formatted, fixed = TRUE) # kw-only separator
formatted <- sub("\\)($| ->)", "\n)\\1", formatted) # final closing parens )
}
formatted
},
error = function(e) NULL)
}
formatted_sig <- get_formatted_signature(x) %||%
get_formatted_signature(py_get_attr(x, "__init__", TRUE), TRUE) %||%
get_formatted_signature(py_get_attr(x, "__new__", TRUE), TRUE) %||%
"(?)"
sprintf(" signature: %s", formatted_sig)
}
#' @importFrom utils str
#' @export
str.python.builtin.object <- function(object, ...) {
if (!py_available() || py_is_null_xptr(object))
cat("<pointer: 0x0>\n")
else
cat(py_str(object), "\n", sep = "")
}
#' @export
str.python.builtin.module <- function(object, ...) {
if (py_is_module_proxy(object)) {
cat("Module(", get("module", envir = object), ")\n", sep = "")
} else {
cat(py_str(object), "\n", sep = "")
}
}
#' @export
as.character.python.builtin.object <- function(x, ...) {
py_str(x)
}
#' Convert Python bytes to an R character or raw vector
#'
#' @inheritParams base::as.character
#'
#' @param encoding Encoding to use for conversion (defaults to utf-8)
#' @param errors Policy for handling conversion errors. Default is 'strict'
#' which raises an error. Other possible values are 'ignore' and 'replace'.
#' @param nul Action to take if the bytes contain an embedded NUL (`\x00`).
#' Python allows embedded `NUL`s in strings, while R does not. There are four
#' options for handling embedded `NUL`s:
#'
#' 1. Error: This is the default
#' 2. Replace: Supply a replacement string: `nul = "<NUL>"`
#' 3. Remove: Supply an empty string: `nul = ""`
#' 4. Split: Supply an R `NULL` to indicate that string should be split at embedded `NUL` bytes: `nul = NULL`
#'
#' @export
#' @seealso [as.character.python.builtin.str()]
#' @examplesIf reticulate::py_available()
#' # A bytes object with embedded NULs
#' b <- import_builtins(convert = FALSE)$bytes(
#' as.raw(c(0x61, 0x20, 0x62, 0x00, 0x63, 0x20, 0x64)) # "a b<NUL>c d"
#' )
#'
#' try(as.character(b)) # Error : Embedded NUL in string.
#' as.character(b, nul = "<NUL>") # Replace: "a b<NUL>c d"
#' as.character(b, nul = "") # Remove: "a bc d"
#' as.character(b, nul = NULL) # Split: "a b" "c d"
as.character.python.builtin.bytes <-
function(x, encoding = "utf-8", errors = "strict",
nul = stop("Embedded NUL in string."), ...) {
local_conversion_scope(x, TRUE)
if(missing(nul))
# will throw an error if bytes contain embedded nul
x$decode(encoding = encoding, errors = errors)
else if(is.null(nul)) {
# split string at embedded nulls.
vapply(x$split(import("builtins")$bytes(list(0L))),
function(slice) slice$decode(encoding = encoding, errors = errors),
"")
} else {
# replace embedded nulls with supplied string
bt <- import("builtins", convert = FALSE)
nul <- bt$str(as.character(nul))$encode()
x$replace(bt$bytes(list(0L)), nul)$decode(encoding = encoding, errors = errors)
}
}
#' @export
#' @rdname as.character.python.builtin.bytes
as.raw.python.builtin.bytes <- function(x) {
import_builtins()$bytearray(x)
}
#' Convert a Python string to an R Character Vector
#'
#' @param x A Python string
#' @param nul Action to take if the Python string contains an embedded NUL (`\x00`).
#' Python allows embedded `NUL`s in strings, while R does not. There are four
#' options for handling embedded `NUL`s:
#'
#' 1. Error: This is the default
#' 2. Replace: Supply a replacement string: `nul = "<NUL>"`
#' 3. Remove: Supply an empty string: `nul = ""`
#' 4. Split: Supply an R `NULL` to indicate that string should be split at embedded `NUL` bytes: `nul = NULL`
#'
#' @param ... Unused
#' @export
#' @return An R character vector. The returned vector will always of length 1,
#' unless `nul = NULL` was supplied.
#' @examplesIf reticulate::py_available()
#' # Given a Python function that errors when it attempts to return
#' # a string with an embedded NUL
#' py_run_string('
#' def get_string_w_nul():
#' return "a b" + chr(0) + "c d"
#' ')
#' get_string_w_nul <- py$get_string_w_nul
#'
#' try(get_string_w_nul()) # Error : Embedded NUL in string.
#'
#' # To get the string into R, use `r_to_py()` on the function to stop it from
#' # eagerly converting the Python string to R, and then call `as.character()` with
#' # a `nul` argument supplied to convert the string to R.
#' get_string_w_nul <- r_to_py(get_string_w_nul)
#' get_string_w_nul() # unconverted python string: inherits(x, 'python.builtin.str')
#' as.character(get_string_w_nul(), nul = "<NUL>") # Replace: "a b<NUL>c d"
#' as.character(get_string_w_nul(), nul = "") # Remove: "a bc d"
#' as.character(get_string_w_nul(), nul = NULL) # Split: "a b" "c d"
#'
#' # cleanup example
#' rm(get_string_w_nul); py$get_string_w_nul <- NULL
as.character.python.builtin.str <-
function(x, nul = stop("Embedded NUL in string."), ...) {
if (missing(nul))
return(py_str_impl(x))
local_conversion_scope(x, TRUE)
py_nul_str <- import("builtins", convert = FALSE)$chr(0L)
if (is.null(nul)) # split string at embedded nulls.
return(x$split(py_nul_str))
# else: replace embedded nulls with supplied string
x$replace(py_nul_str, as.character(nul))
}
.operators <- new.env(parent = emptyenv())
fetch_op <- function(nm, op, nargs = 1L) {
if (is.null(fn <- .operators[[nm]])) {
force(op)
if (nargs == 1L) {
call_op_and_maybe_convert <- function(...)
py_maybe_convert(op(...), py_has_convert(..1))
} else if (nargs == 2L) {
# Ops group generics
call_op_and_maybe_convert <- function(...) {
result <- op(...)
# if either dispatch object has convert=FALSE, don't convert
convert <-
!((is_py_object(..1) && !py_has_convert(..1)) ||
(is_py_object(..2) && !py_has_convert(..2)))
py_maybe_convert(result, convert)
}
} else stop("invalid nargs value: ", nargs)
fn <- .operators[[nm]] <- call_op_and_maybe_convert
}
fn
}
#' S3 Ops Methods for Python Objects
#'
#' Reticulate provides S3 Ops Group Generic Methods for Python objects. The methods
#' invoke the equivalent python method of the object.
#'
#' @param e1,e2,x,y A python object.
#'
#' @section Operator Mappings:
#'
#' | R expression | Python expression | First python method invoked |
#' | ------------- | ----------------- | --------------------------- |
#' | `x == y` | `x == y` | `type(x).__eq__(x, y)` |
#' | `x != y` | `x != y` | `type(x).__ne__(x, y)` |
#' | `x < y` | `x < y` | `type(x).__lt__(x, y)` |
#' | `x > y` | `x > y` | `type(x).__gt__(x, y)` |
#' | `x >= y` | `x >= y` | `type(x).__ge__(x, y)` |
#' | `x <= y` | `x <= y` | `type(x).__le__(x, y)` |
#' | `+ x ` | `+ x` | `type(x).__pos__(x)` |
#' | `- y` | `- x` | `type(x).__neg__(x)` |
#' | `x + y` | `x + y` | `type(x).__add__(x, y)` |
#' | `x - y` | `x - y` | `type(x).__sub__(x, y)` |
#' | `x * y` | `x * y` | `type(x).__mul__(x, y)` |
#' | `x / y` | `x / y` | `type(x).__truediv__(x, y)` |
#' | `x %/% y` | `x // y` | `type(x).__floordiv__(x, y)` |
#' | `x %% y` | `x % y` | `type(x).__mod__(x, y)` |
#' | `x ^ y` | `x ** y` | `type(x).__pow__(x, y)` |
#' | `x & y` | `x & y` | `type(x).__and__(x, y)` |
#' | \code{x | y} | \code{x | y} | `type(x).__or__(x, y)` |
#' | `!x` | `~x` | `type(x).__not__(x)` |
#' | `x %*% y` | `x @ y` | `type(x).__matmul__(x, y)`|
#'
#' Note: If the initial Python method invoked raises a `NotImplemented`
#' Exception, the Python interpreter will attempt to use the reflected
#' variant of the method from the second argument. The arithmetic operators
#' will call the equivalent double underscore (dunder) method with an "r" prefix. For
#' instance, when evaluating the expression `x + y`, if `type(x).__add__(x, y)`
#' raises a `NotImplemented` exception, then the interpreter will attempt
#' `type(y).__radd__(y, x)`. The comparison operators follow a different
#' sequence of fallbacks; refer to the Python documentation for more details.
#'
#' @return Result from evaluating the Python expression. If either of the
#' arguments to the operator was a Python object with `convert=FALSE`, then
#' the result will also be a Python object with `convert=FALSE` set.
#' Otherwise, the result will be converted to an R object if possible.
#' @rdname Ops-python-methods
#' @export
"==.python.builtin.object" <- function(e1, e2) {
op <- fetch_op("eq", py_eval("lambda e1, e2: e1 == e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
"!=.python.builtin.object" <- function(e1, e2) {
op <- fetch_op("ne", py_eval("lambda e1, e2: e1 != e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
"<.python.builtin.object" <- function(e1, e2) {
op <- fetch_op("lt", py_eval("lambda e1, e2: e1 < e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
">.python.builtin.object" <- function(e1, e2) {
op <- fetch_op("gt", py_eval("lambda e1, e2: e1 > e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
">=.python.builtin.object" <- function(e1, e2) {
op <- fetch_op("ge", py_eval("lambda e1, e2: e1 >= e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
"<=.python.builtin.object" <- function(e1, e2) {
op <- fetch_op("le", py_eval("lambda e1, e2: e1 <= e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
# This uses PyObject_RichCompareBool(), which expects only py bools.
# It will throw an exception on, e.g., with numpy arrays,
# even though numpy.ndarray defines an __eq__() method.
py_compare <- function(a, b, op) {
py_validate_xptr(a)
if (!inherits(b, "python.builtin.object"))
b <- r_to_py(b)
py_validate_xptr(b)
py_compare_impl(a, b, op)
}
#' @rdname Ops-python-methods
#' @export
`+.python.builtin.object` <- function(e1, e2) {
if (missing(e2)) {
op <- fetch_op("pos", py_eval("lambda e1: +e1", convert = FALSE))
return(op(e1))
}
op <- fetch_op("add", py_eval("lambda e1, e2: e1 + e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`-.python.builtin.object` <- function(e1, e2) {
if (missing(e2)) {
op <- fetch_op("neg", py_eval("lambda e1: -e1", convert = FALSE))
return(op(e1))
}
op <- fetch_op("sub", py_eval("lambda e1, e2: e1 - e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`*.python.builtin.object` <-function(e1, e2) {
op <- fetch_op("*", py_eval("lambda e1, e2: e1 * e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`/.python.builtin.object` <- function(e1, e2) {
op <- fetch_op("/", py_eval("lambda e1, e2: e1 / e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`%/%.python.builtin.object` <- function(e1, e2) {
op <- fetch_op("//", py_eval("lambda e1, e2: e1 // e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`%%.python.builtin.object` <- function(e1, e2) {
op <- fetch_op("%", py_eval("lambda e1, e2: e1 % e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`^.python.builtin.object` <- function(e1, e2) {
op <- fetch_op("pow", import_builtins(FALSE)$pow,
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`&.python.builtin.object` <- function(e1, e2) {
op <- fetch_op("&", py_eval("lambda e1, e2: e1 & e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`|.python.builtin.object` <- function(e1, e2) {
op <- fetch_op("|", py_eval("lambda e1, e2: e1 | e2", convert = FALSE),
nargs = 2L)
op(e1, e2)
}
#' @rdname Ops-python-methods
#' @export
`!.python.builtin.object` <- function(e1) {
op <- fetch_op("~", py_eval("lambda e1: ~ e1", convert = FALSE))
op(e1)
}
#' @rdname Ops-python-methods
#' @rawNamespace if (getRversion() >= "4.3.0") S3method("%*%",python.builtin.object)
`%*%.python.builtin.object` <-function(x, y) {
op <- fetch_op("@", py_eval("lambda x, y: x @ y", convert = FALSE),
nargs = 2L)
op(x, y)
}
#' @export
summary.python.builtin.object <- function(object, ...) {
str(object)
}
py_has_convert <- py_get_convert
py_maybe_convert <- function(x, convert) {
if(convert)
x <- py_to_r(x)
x
}
# helper function for accessing attributes or items from a
# Python object, after validating that we do indeed have
# a valid Python object reference
py_get_attr_or_item <- function(x, name, prefer_attr) {
# skip if this is a NULL xptr
if (py_is_null_xptr(x))
return(NULL)
# re-cast numeric values as integers
if (is.numeric(name))
name <- as.integer(name)
# attributes must always be indexed by strings, so if
# we receive a non-string 'name', we call py_get_item
if (!is.character(name)) {
item <- py_get_item(x, name)
return(py_maybe_convert(item, py_has_convert(x)))
}
# get the attrib and convert as needed
object <- NULL
if (prefer_attr) {
object <- py_get_attr(x, name)
} else {
# if we have an attribute, attempt to get the item
# but allow for fallback to that attribute. note that
# the logic here is fairly convoluted but is necessary
# to maintain backwards compatibility with a number of
# CRAN packages (hopefully we can simplify this in the
# future)
if (py_has_attr(x, name)) {
# try to get item
if (py_has_attr(x, "__getitem__"))
object <- py_get_item(x, name, silent = TRUE)
# fallback to attribute
if (is.null(object))
object <- py_get_attr(x, name)
} else {
# we don't have an attribute; only attempt item
# access and allow normal error propagation
object <- py_get_item(x, name)
}
}
py_maybe_convert(object, py_has_convert(x))
}
#' @export
`$.python.builtin.object` <- function(x, name) {
py_get_attr_or_item(x, name, TRUE)
}
#' @export
`[[.python.builtin.object` <- function(x, name) {
py_get_attr_or_item(x, name, FALSE)
}
#' @export
`$.python.builtin.module` <- function(x, name) {
attr <- py_get_attr(x, name, TRUE)
if(!is.null(attr))
return(py_maybe_convert(attr, py_has_convert(x)))
# special handling for embedded modules (which don't always show
# up as "attributes")
module <- py_get_submodule(x, name, py_has_convert(x))
if (!is.null(module))
return(module)
# fall back to raising the AttributeError
py_get_attr(x, name, FALSE)
}
# the as.environment generic enables python objects that manifest
# as R functions (e.g. for functions, classes, callables, etc.) to
# be resolve the environment containing the external pointer (the "refenv")
# This is still useful e.g., for passing to assign("convert", x, as.environment(x)).
# This was previously the primary mechanism that allowed for constructing
# PyObjectRefs from closures, before PyObjectRefs was refactored. The S3 generic
# is retained for backwards-compatability.
#' @export
as.environment.python.builtin.object <- function(x) {
if (is.function(x))
attr(x, "py_object")
else
x
}
#' @export
`$<-.python.builtin.object` <- function(x, name, value) {
if (!py_is_null_xptr(x) && py_available())
py_set_attr(x, name, value)
else
stop("Unable to assign value (object reference is NULL)")
x
}
#' @export
`[[<-.python.builtin.object` <- `$<-.python.builtin.object`
#' @export
.DollarNames.python.builtin.module <- function(x, pattern = "") {
# resolve module proxies (ignore errors since this is occurring during completion)
if (py_is_module_proxy(x)) {
result <- tryCatch({
py_resolve_module_proxy(x)
TRUE
}, error = clear_error_handler(FALSE))
if (!result)
return(character())
}
# delegate
.DollarNames.python.builtin.object(x, pattern)
}
#' @importFrom utils .DollarNames
#' @export
.DollarNames.python.builtin.object <- function(x, pattern = "") {
# skip if this is a NULL xptr
if (py_is_null_xptr(x) || !py_available())
return(character())
# check for dictionary
if (inherits(x, "python.builtin.dict")) {
names <- py_dict_get_keys_as_str(x)
names <- names[substr(names, 1, 1) != '_']
Encoding(names) <- "UTF-8"
types <- rep_len(0L, length(names))
} else {
# get the names and filter out internal attributes (_*)
names <- py_suppress_warnings(py_list_attributes(x))
names <- names[substr(names, 1, 1) != '_']
# replace function with `function`
names <- sub("^function$", "`function`", names)
names <- sort(names, decreasing = FALSE)
# get the types
types <- py_suppress_warnings(py_get_attr_types(x, names))
}
# if this is a module then add submodules
if (inherits(x, "python.builtin.module")) {
name <- py_get_name(x)
if (!is.null(name)) {
submodules <- sort(py_list_submodules(name), decreasing = FALSE)
Encoding(submodules) <- "UTF-8"
names <- c(names, submodules)
types <- c(types, rep_len(5L, length(submodules)))
}
}
idx <- grepl(pattern, names)
names <- names[idx]
types <- types[idx]
if (length(names) > 0) {
# set types
oidx <- order(names)
names <- names[oidx]
attr(names, "types") <- types[oidx]
# specify a help_handler
attr(names, "helpHandler") <- "reticulate:::help_handler"
}
# return
names
}
#' @export
names.python.builtin.object <- function(x) {
as.character(.DollarNames(x))
}
#' @export
names.python.builtin.module <- function(x) {
as.character(.DollarNames(x))
}
#' @export
as.array.numpy.ndarray <- function(x, ...) {
py_to_r(x)
}
#' @export
as.matrix.numpy.ndarray <- function(x, ...) {
py_to_r(x)
}
#' @export
as.vector.numpy.ndarray <- function(x, mode = "any") {
a <- as.array(x)
as.vector(a, mode = mode)
}
#' @export
as.double.numpy.ndarray <- function(x, ...) {
a <- as.array(x)
as.double(a)
}
#' @importFrom graphics plot
#' @export
plot.numpy.ndarray <- function(x, y, ...) {
plot(as.array(x))
}
#' Create Python dictionary
#'
#' Create a Python dictionary object, including a dictionary whose keys are
#' other Python objects rather than character vectors.
#'
#' @param ... Name/value pairs for dictionary (or a single named list to be
#' converted to a dictionary).
#' @param keys Keys to dictionary (can be Python objects)
#' @param values Values for dictionary
#' @param convert `TRUE` to automatically convert Python objects to their R
#' equivalent. If you pass `FALSE` you can do manual conversion using the
#' [py_to_r()] function.
#'
#' @return A Python dictionary
#'
#' @note The returned dictionary will not automatically convert its elements
#' from Python to R. You can do manual conversion with the [py_to_r()]
#' function or pass `convert = TRUE` to request automatic conversion.
#'
#' @export
dict <- function(..., convert = FALSE) {
# get the args
values <- list(...)
# flag indicating whether we should scan the parent frame for python
# objects that should serve as the key (e.g. a Tensor)
scan_parent_frame <- TRUE
# if there is a single element and it's a list then use that
if (length(values) == 1L && is.null(names(values)) && is.list(values[[1L]])) {
values <- values[[1]]
scan_parent_frame <- FALSE
}
# get names
names <- names(values)
# evaluate names in parent env to get keys
frame <- parent.frame()
keys <- lapply(names, function(name) {
# allow python objects to serve as keys
if (scan_parent_frame && exists(name, envir = frame, inherits = TRUE)) {
key <- get(name, envir = frame, inherits = TRUE)
if (is_py_object(key))
key
else
name
} else {
if (grepl("^[0-9]+$", name))
name <- as.integer(name)
else
name
}
})
# construct dict
py_dict_impl(keys, values, convert = convert)
}
#' @rdname dict
#' @export
py_dict <- function(keys, values, convert = FALSE) {
py_dict_impl(keys, values, convert = convert)
}
#' Create Python tuple
#'
#' Create a Python tuple object
#'
#' @inheritParams dict
#' @param ... Values for tuple (or a single list to be converted to a tuple).
#'
#' @return A Python tuple
#' @note The returned tuple will not automatically convert its elements from
#' Python to R. You can do manual conversion with the [py_to_r()] function or
#' pass `convert = TRUE` to request automatic conversion.
#'
#' @export
tuple <- function(..., convert = FALSE) {
# get the args
values <- list(...)
# if it's a single value then maybe do some special resolution
if (length(values) == 1L) {
# alias value
value <- values[[1L]]
# reflect tuples back
if (inherits(value, "python.builtin.tuple"))
return(value)
# if it's a list then use the list as the values
if (is.list(value))
values <- value
}
# construct tuple
py_tuple(values, convert = convert)
}
#' @export
length.python.builtin.tuple <- function(x) {
if (py_is_null_xptr(x) || !py_available())
0L
else
py_tuple_length(x)
}
#' Length of Python object
#'
#' Get the length of a Python object. This is equivalent to calling
#' the Python builtin `len()` function on the object.
#'
#' Not all Python objects have a defined length. For objects without a defined
#' length, calling `py_len()` will throw an error. If you'd like to instead
#' infer a default length in such cases, you can set the `default` argument
#' to e.g. `1L`, to treat Python objects without a `__len__` method as having
#' length one.
#'
#' @param x A Python object.
#'
#' @param default The default length value to return, in the case that
#' the associated Python object has no `__len__` method. When `NULL`
#' (the default), an error is emitted instead.
#'
#' @return The length of the object, as a numeric value.
#'
#' @export
py_len <- function(x, default = NULL) {
# return 0 if Python not yet available
if (py_is_null_xptr(x) || !py_available())
return(0L)
# delegate to C++
py_len_impl(x, default)
}
#' @export
length.python.builtin.list <- function(x) {
py_list_length(x)
}
#' @export
length.python.builtin.object <- function(x) {
# return 0 if Python not yet available
# Note: some packages (rgeedim) use `length(module) == 0` as a way to check if
# an object is a delayed module without forcing it to load.
# Note, a better way to check is: reticulate::py_module_available("module_name")
if (py_is_module_proxy(x) || !py_available() || py_is_null_xptr(x))
return(0L)
# otherwise, try to invoke the object's __len__ method
n <- py_len_impl(x, NA_integer_)
# if the object didn't have a __len__() method, or __len__() raised an
# Exception, try instead to invoke its __bool__() method.
if (is.na(n)) {
n <- as.integer(py_bool_impl(x, TRUE))
# py_bool_impl( ,TRUE) can also return NA if __bool__() raised an exception.
# length() is used extensively in R and must be safe to call, so we don't
# want to propagate the Python Exception and signal an R error, but also
# don't want to return a false result. We balance concerns by returning NA.
}
n
}
#' Python Truthiness
#'
#' Equivalent to `bool(x)` in Python, or `not not x`.
#'
#' If the Python object defines a `__bool__` method, then that is invoked.
#' Otherwise, if the object defines a `__len__` method, then `TRUE` is
#' returned if the length is nonzero. If neither `__len__` nor `__bool__`
#' are defined, then the Python object is considered `TRUE`.
#'
#' @param x, A python object.
#'
#' @return An R scalar logical: `TRUE` or `FALSE`. If `x` is a
#' null pointer or Python is not initialized, `FALSE` is returned.
#' @export
py_bool <- function(x) {
if (py_is_null_xptr(x) || !py_available())
FALSE
else
py_bool_impl(x)
}
#' Convert to Python Unicode Object
#'
#' @param str Single element character vector to convert
#'
#' @details By default R character vectors are converted to Python strings.
#' In Python 3 these values are unicode objects however in Python 2
#' they are 8-bit string objects. This function enables you to
#' obtain a Python unicode object from an R character vector
#' when running under Python 2 (under Python 3 a standard Python
#' string object is returned).
#'
#' @export
py_unicode <- function(str) {
if (is_python3()) {
r_to_py(str)
} else {
py <- import_builtins()
py_call(py_get_attr(py, "unicode"), str)
}
}
#' Evaluate an expression within a context.
#'
#' The \code{with} method for objects of type \code{python.builtin.object}
#' implements the context manager protocol used by the Python \code{with}
#' statement. The passed object must implement the
#' \href{https://docs.python.org/3/reference/datamodel.html#context-managers}{context
#' manager} (\code{__enter__} and \code{__exit__} methods.
#'
#' @param data Context to enter and exit
#' @param expr Expression to evaluate within the context
#' @param as Name of variable to assign context to for the duration of the
#' expression's evaluation (optional).
#' @param ... Unused
#'
#' @export
with.python.builtin.object <- function(data, expr, as = NULL, ...) {
# enter the context
context <- data$`__enter__`()
# check for as and as_envir
if (!missing(as)) {
as <- deparse(substitute(as))
as <- gsub("\"", "", as)
} else {
as <- attr(data, "as")
}
envir <- attr(data, "as_envir")
if (is.null(envir))
envir <- parent.frame()
# assign the context if we have an as parameter
if (!is.null(as)) {
assign(as, context, envir = envir)
}
# evaluate the expression and exit the context
tryCatch(force(expr),
finally = {
data$`__exit__`(NULL, NULL, NULL)
}
)
}
#' Create local alias for objects in \code{with} statements.
#'
#' @param object Object to alias
#' @param name Alias name
#'
#' @name with-as-operator
#'
#' @keywords internal
#' @export
"%as%" <- function(object, name) {
as <- deparse(substitute(name))
as <- gsub("\"", "", as)
attr(object, "as") <- as
attr(object, "as_envir") <- parent.frame()
object
}
#' Traverse a Python iterator or generator
#'
#' @param x Python iterator or iterable
#' @param it Python iterator or generator
#' @param f Function to apply to each item. By default applies the
#' \code{identity} function which just reflects back the value of the item.
#' @param simplify Should the result be simplified to a vector if possible?
#' @param completed Sentinel value to return from `iter_next()` if the iteration
#' completes (defaults to `NULL` but can be any R value you specify).
#'
#' @return For `iterate()`, A list or vector containing the results of calling
#' \code{f} on each item in \code{x} (invisibly); For `iter_next()`, the next
#' value in the iteration (or the sentinel `completed` value if the iteration
#' is complete).
#'
#' @details Simplification is only attempted all elements are length 1 vectors
#' of type "character", "complex", "double", "integer", or "logical".
#'
#' @export
iterate <- function(it, f = base::identity, simplify = TRUE) {
invisible(py_iterate(it, f, simplify))
}
#' @rdname iterate
#' @export
iter_next <- function(it, completed = NULL) {
py_iter_next(it, completed)
}
#' Call a Python callable object
#'
#' @param ... Arguments to function (named and/or unnamed)
#'
#' @return Return value of call as a Python object.
#'
#' @keywords internal
#'
#' @export
py_call <- function(x, ...) {
dots <- split_named_unnamed(list(...))
py_call_impl(x, dots$unnamed, dots$named)
}
#' The Python None object
#'
#' Get a reference to the Python `None` object.
#'
#' @export
py_none <- function() {
py_none_impl()
}
#' List all attributes of a Python object
#'
#'
#' @param x Python object
#'
#' @return Character vector of attributes
#' @export
py_list_attributes <- function(x) {
attrs <- py_list_attributes_impl(x)
Encoding(attrs) <- "UTF-8"
attrs
}
#' String representation of a python object.
#'
#' This is equivalent to calling `str(object)` or `repr(object)` in Python.
#'
#' In Python, calling `print()` invokes the builtin `str()`, while auto-printing
#' an object at the REPL invokes the builtin `repr()`.
#'
#' In \R, the default print method for python objects invokes `py_repr()`, and
#' the default `format()` and `as.character()` methods invoke `py_str()`.
#'
#' For historical reasons, `py_str()` is also an \R S3 method that allows R
#' authors to customize the the string representation of a Python object from R.
#' New code is recommended to provide a `format()` and/or `print()` S3 R method
#' for python objects instead.
#'
#' @param object Python object
#' @param ... Unused
#'
#' @return Character vector
#'
#' @details The default implementation will call `PyObject_Str` on the object.
#'
#' @seealso [as.character.python.builtin.str()]
#' [as.character.python.builtin.bytes()] for handling
#' `Error : Embedded NUL in string.` if the Python string contains an embedded `NUL`.
#'
#' @export
py_str <- function(object, ...) {
if (!is_py_object(object))
"<not a python object>"
else if (py_is_null_xptr(object) || !py_available())
"<pointer: 0x0>"
else
UseMethod("py_str")
}
#' @export
py_str.default <- function(object, ...) {
"<not a python object>"
}
#' @export
py_str.python.builtin.object <- function(object, ...) {
py_str_impl(object)
}
#' @export
format.python.builtin.module <- function(x, ...) {
if (py_is_module_proxy(x))
return(paste0("Module(", get("module", envir = x), ")", sep = ""))
NextMethod()
}
#' @export
format.python.builtin.object <- function(x, ...) {
if (py_is_null_xptr(x) || !py_available())
return("<pointer: 0x0>")
# get default rep, potentially user defined S3
str <- py_str(x)
# remove e.g. 'object at 0x10d084710'
str <- gsub(" object at 0x\\w{4,}", "", str)
# return
str
}
#' @export
py_str.python.builtin.bytearray <- function(object, ...) {
paste0("python.builtin.bytearray (", py_len_impl(object), " bytes)")
}
#' @export
py_str.python.builtin.module <- function(object, ...) {
paste0("Module(", py_get_name(object), ")")
}
#' @export
py_str.python.builtin.list <- function(object, ...) {
py_collection_str("List", object)
}
#' @export
py_str.python.builtin.dict <- function(object, ...) {
py_collection_str("Dict", object)
}
#' @export
py_str.python.builtin.tuple <- function(object, ...) {
py_collection_str("Tuple", object)
}
py_collection_str <- function(name, object) {
len <- py_len_impl(object)
if (len > 10)
paste0(name, " (", len, " items)")
else
py_str.python.builtin.object(object)
}
.print.via.format <- function(x, ...) {
writeLines(format(x, ...))
invisible(x)
}
#' @export
print.python.builtin.bytearray <- .print.via.format
#' @export
print.python.builtin.tuple <- .print.via.format
#' @export
print.python.builtin.module <- .print.via.format
#' @export
print.python.builtin.list <- .print.via.format
#' @export
print.python.builtin.dict <- .print.via.format
#' Suppress Python warnings for an expression
#'
#' @param expr Expression to suppress warnings for
#'
#' @return Result of evaluating expression
#'
#' @export
py_suppress_warnings <- function(expr) {
ensure_python_initialized()
# ignore any registered warning output types (e.g. tf warnings)
contexts <- lapply(.globals$suppress_warnings_handlers, function(handler) {
handler$suppress()
})
on.exit({
if (length(contexts) > 0) {
for (i in 1:length(contexts)) {
handler <- .globals$suppress_warnings_handlers[[i]]
handler$restore(contexts[[i]])
}
}
}, add = TRUE)
# evaluate while ignoring python warnings
warnings <- import("warnings")
with(warnings$catch_warnings(), expr)
}
#' Register a handler for calls to py_suppress_warnings
#'
#' @param handler Handler
#'
#' @details Enables packages to register a pair of functions
#' to be called to suppress and then re-enable warnings
#'
#' @keywords internal
#' @export
register_suppress_warnings_handler <- function(handler) {
.globals$suppress_warnings_handlers[[length(.globals$suppress_warnings_handlers) + 1]] <- handler
}
#' Register a filter for class names
#'
#' @param filter Function which takes a class name and maps it to an alternate
#' name
#'
#' @keywords internal
#' @export
register_class_filter <- function(filter) {
.globals$class_filters[[length(.globals$class_filters) + 1]] <- filter
}
#' Capture and return Python output
#'
#' @param expr Expression to capture stdout for
#' @param type Streams to capture (defaults to both stdout and stderr)
#'
#' @return Character vector with output
#'
#' @export
py_capture_output <- function(expr, type = c("stdout", "stderr")) {
# initialize python if necessary
# without expressing an implict venv preference
# via an internal import() call
ensure_python_initialized()
# resolve type argument
type <- match.arg(type, several.ok = TRUE)
# get output tools helper functions
output_tools <- import("rpytools.output")
# scope output capture
capture_stdout <- "stdout" %in% type
capture_stderr <- "stderr" %in% type
context_manager <- output_tools$OutputCaptureContext(
capture_stdout, capture_stderr
)
context_manager$`__enter__`()
tryCatch(
force(expr),
finally = {
context_manager$`__exit__`()
}
)
# collect output
context_manager$collect_output()
}
#' Run Python code
#'
#' Execute code within the scope of the \code{__main__} Python module.
#'
#' @inheritParams import
#'
#' @param code The Python code to be executed.
#' @param file The Python script to be executed.
#' @param local Boolean; should Python objects be created as part of
#' a local / private dictionary? If `FALSE`, objects will be created within
#' the scope of the Python main module.
#' @param prepend_path Boolean; should the script directory be added to the
#' Python module search path? The default, `TRUE`, matches the behavior of
#' `python <path/to/script.py>` at the command line.
#'
#' @return A Python dictionary of objects. When `local` is `FALSE`, this
#' dictionary captures the state of the Python main module after running
#' the provided code. Otherwise, only the variables defined and used are
#' captured.
#'
#' @name py_run
#'
#' @export
py_run_string <- function(code, local = FALSE, convert = TRUE) {
invisible(py_run_string_impl(code, local, convert))
}
#' @rdname py_run
#' @export
py_run_file <- function(file, local = FALSE, convert = TRUE, prepend_path = TRUE) {
ensure_python_initialized()
file <- path.expand(file)
if (prepend_path) {
sys <- import("sys", convert = FALSE)
sys$path$insert(0L, dirname(file))
on.exit(sys$path$remove(dirname(file)), add = TRUE)
}
invisible(py_run_file_impl(file, local, convert))
}
#' Evaluate a Python Expression
#'
#' Evaluate a single Python expression, in a way analogous to the Python
#' `eval()` built-in function.
#'
#' @param code A single Python expression.
#' @param convert Boolean; automatically convert Python objects to R?
#'
#' @return The result produced by evaluating `code`, converted to an `R`
#' object when `convert` is set to `TRUE`.
#'
#' @section Caveats:
#'
#' `py_eval()` only supports evaluation of 'simple' Python expressions.
#' Other expressions (e.g. assignments) will fail; e.g.
#'
#' ```
#' > py_eval("x = 1")
#' Error in py_eval_impl(code, convert) :
#' SyntaxError: invalid syntax (reticulate_eval, line 1)
#' ```
#'
#' and this mirrors what one would see in a regular Python interpreter:
#'
#' ```
#' >>> eval("x = 1")
#' Traceback (most recent call last):
#' File "<stdin>", line 1, in <module>
#' File "<string>", line 1
#' x = 1
#' ^
#' SyntaxError: invalid syntax
#' ```
#'
#' The [py_run_string()] method can be used if the evaluation of arbitrary
#' Python code is required.
#'
#' @export
py_eval <- function(code, convert = TRUE) {
py_eval_impl(code, convert)
}
#' The builtin constant Ellipsis
#'
#' @export
py_ellipsis <- function() {
builtins <- import_builtins(convert = FALSE)
builtins$Ellipsis
}
#' @importFrom rlang list2
py_callable_as_function <- function(callable) {
force(callable)
as.function.default(c(py_get_formals(callable), quote({
cl <- sys.call()
cl[[1L]] <- list2
call_args <- split_named_unnamed(eval(cl, parent.frame()))
result <- py_call_impl(callable, call_args$unnamed, call_args$named)
if(py_get_convert(callable))
result <- py_to_r(result)
if (is.null(result))
invisible(result)
else
result
})))
}
split_named_unnamed <- function(x) {
nms <- names(x)
if (is.null(nms))
return(list(unnamed = x, named = list()))
named <- nzchar(nms)
list(unnamed = x[!named], named = x[named])
}
py_is_module <- function(x) {
inherits(x, "python.builtin.module")
}
py_is_module_proxy <- function(x) {
typeof(x) == "environment" &&
exists("module", envir = x, inherits = FALSE) &&
inherits(x, "python.builtin.module")
}
py_resolve_module_proxy <- function(proxy) {
if(!py_is_module_proxy(proxy))
return(FALSE)
# collect module proxy hooks
collect_value <- function(name, clear = TRUE) {
if (exists(name, envir = proxy, inherits = FALSE)) {
value <- get(name, envir = proxy, inherits = FALSE)
if (clear)
remove(list = name, envir = proxy)
value
} else {
NULL
}
}
# name of module to import (allow just in time customization via hook)
get_module <- collect_value("get_module")
if (!is.null(get_module))
assign("module", get_module(), envir = proxy)
# get module name
module <- get("module", envir = proxy)
# execute before load handler
before_load <- collect_value("before_load", clear = TRUE)
if (is.function(before_load))
before_load()
# perform the import -- capture error and amend it with
# python configuration information if we have it
result <- tryCatch(import(module), error = clear_error_handler())
if (inherits(result, "error")) {
# load and error handlers
on_error <- collect_value("on_error", clear = FALSE)
if (!is.null(on_error)) {
# call custom error handler
if (is.function(on_error))
on_error(result)
# error handler can and should call `stop`, this is just a failsafe
stop("Error loading Python module ", module, call. = FALSE)
} else {
# default error message/handler
message <- py_config_error_message(paste("Python module", module, "was not found."))
stop(message, call. = FALSE)
}
}
# clear any custom 'on_error' hook
collect_value("on_error", clear = TRUE)
# clear the global tracking of delay load modules
.globals$delay_load_imports <- NULL
# fixup the proxy. Note, the proxy may have already been fixed up,
# if `import(module)` triggered hooks to run registered via
# (unexported) py_register_load_hook()
py_module_proxy_import(proxy)
# call on_load if provided
on_load <- collect_value("on_load", clear = TRUE)
if (is.function(on_load))
on_load()
TRUE
}
py_get_name <- function(x) {
py_to_r(py_get_attr(x, "__name__"))
}
py_get_submodule <- function(x, name, convert = TRUE) {
module_name <- paste(py_get_name(x), name, sep=".")
result <- tryCatch(import(module_name, convert = convert),
error = clear_error_handler())
if (inherits(result, "error"))
NULL
else
result
}
py_filter_classes <- function(classes) {
for (filter in .globals$class_filters)
classes <- filter(classes)
classes
}
py_inject_r <- function() {
# don't inject 'r' if there's already an 'r' object defined
main <- import_main(convert = FALSE)
if (py_has_attr(main, "r"))
return(FALSE)
# define our 'R' class
py_run_string("class R(object): pass")
# extract it from the main module
main <- import_main(convert = FALSE)
R <- main$R
# define the getters, setters we'll attach to the Python class
getter <- function(self, code) {
envir <- py_resolve_envir()
object <- eval(parse(text = as_r_value(code)), envir = envir)
r_to_py(object, convert = is.function(object))
}
setter <- function(self, name, value) {
envir <- py_resolve_envir()
name <- as_r_value(name)
value <- as_r_value(value)
assign(name, value, envir = envir)
}
py_set_attr(R, "__getattr__", getter)
py_set_attr(R, "__setattr__", setter)
py_set_attr(R, "__getitem__", getter)
py_set_attr(R, "__setitem__", setter)
# now define the R object
py_run_string("r = R()")
# remove the 'R' class object
py_del_attr(main, "R")
# indicate success
TRUE
}
py_resolve_envir <- function() {
# if an environment has been set, use it
envir <- getOption("reticulate.engine.environment")
if (is.environment(envir))
return(envir)
# if we're running in a knitr document, use the knit env
if ("knitr" %in% loadedNamespaces()) {
.knitEnv <- yoink("knitr", ".knitEnv")
envir <- .knitEnv$knit_global
if (is.environment(envir))
return(envir)
}
# if we're running in a testthat test, use the rlang reported envir
envir <- getOption("rlang_trace_top_env")
if (is.environment(envir))
return(envir)
# otherwise, default to the global environment
envir %||% globalenv()
}
py_inject_hooks <- function() {
builtins <- import_builtins(convert = TRUE)
# override input function
if (interactive() && was_python_initialized_by_reticulate()) {
# PyOS_ReadlineFunctionPointer() is not part of the stable ABI.
# PyOS_InputHook() only has one slot - used by other thigns like tkinter.
input <- function(prompt = "") {
readline(prompt)
}
name <- if (is_python3()) "input" else "raw_input"
.globals$og_input_builtin <- builtins[[name]]
builtins[[name]] <- input
}
# register module import callback
useImportHook <- getOption("reticulate.useImportHook", default = is_python3())
if (useImportHook) {
loader <- import("rpytools.loader", convert = TRUE)
loader$initialize(py_module_onload)
}
}
py_module_onload <- function(module) {
# log module loading if requested
if (getOption("reticulate.logModuleLoad", default = FALSE)) {
writeLines(sprintf("Loaded module '%s'", module))
}
# retrieve and clear list of hooks
hookName <- paste("reticulate", module, "load", sep = "::")
hooks <- getHook(hookName)
setHook(hookName, NULL, action = "replace")
# run hooks
for (hook in hooks)
tryCatch(hook(), error = warning)
}
py_module_loaded <- function(module) {
if(is_python_initialized()) {
sys <- import("sys", convert = TRUE)
modules <- names(sys$modules)
} else
modules <- NULL
module %in% modules
}
py_register_load_hook <- function(module, hook) {
# if the module is already loaded, just run the hook
if (py_module_loaded(module))
return(hook())
# otherwise, register the hook to be run on next load
name <- paste("reticulate", module, "load", sep = "::")
setHook(name, hook)
}
#' `nameOfClass()` for Python objects
#'
#' This generic enables passing a `python.builtin.type` object as the 2nd
#' argument to `base::inherits()`.
#'
#' @param x A Python class
#'
#' @return A scalar string matching the S3 class of objects constructed from the
#' type.
#'
#' @rawNamespace if (getRversion() >= "4.3.0") S3method(nameOfClass,python.builtin.type)
#' @examples
#' \dontrun{
#' numpy <- import("numpy")
#' x <- r_to_py(array(1:3))
#' inherits(x, numpy$ndarray)
#' }
nameOfClass.python.builtin.type <- function(x) {
paste(
as_r_value(py_get_attr(x, "__module__")),
as_r_value(py_get_attr(x, "__name__")),
sep = "."
)
}
#' @rawNamespace if (getRversion() >= "4.3.0") S3method(chooseOpsMethod,python.builtin.object)
chooseOpsMethod.python.builtin.object <- function(x, y, mx, my, cl, reverse) {
# If both objects are python objects, and
# 'my' is the default Ops method provided by reticulate
# (e.g, its environment is the reticulate namespace)
# then 'mx' must be the more specific method, select mx.
# e.g.,:
# x class: tensorflow.tensor ... python.builtin.object
# y class: numpy.ndarray python.builtin.object
# 'x * y' gives
# Warning: Incompatible methods ("*.tensorflow.tensor", "*.python.builtin.object") for "*"
# Error in img * x : non-numeric argument to binary operator
inherits(y, "python.builtin.object") &&
identical(environment(my), parent.env(environment()))
}
#' @export
format.python.builtin.traceback <- function(x, ..., limit = NULL) {
import("traceback")$format_tb(x, limit)
}
#' @rdname py_last_error
#' @export
py_clear_last_error <- function() {
py_last_error(NULL)
}
#' Get or (re)set the last Python error encountered.
#'
#' @param exception A python exception object. If provided, the provided
#' exception is set as the last exception.
#'
#' @return For `py_last_error()`, `NULL` if no error has yet been encountered.
#' Otherwise, a named list with entries:
#'
#' + `"type"`: R string, name of the exception class.
#'
#' + `"value"`: R string, formatted exception message.
#'
#' + `"traceback"`: R character vector, the formatted python traceback,
#'
#' + `"message"`: The full formatted raised exception, as it would be printed in
#' Python. Includes the traceback, type, and value.
#'
#' + `"r_trace"`: A `data.frame` with class `rlang_trace` and columns:
#'
#' - `call`: The R callstack, `full_call`, summarized for pretty printing.
#' - `full_call`: The R callstack. (Output of `sys.calls()` at the error callsite).
#' - `parent`: The parent of each frame in callstack. (Output of `sys.parents()` at the error callsite).
#' - Additional columns for internals use: `namespace`, `visible`, `scope`.
#'
#'
#'
#' And attribute `"exception"`, a `'python.builtin.Exception'` object.
#'
#' The named list has `class` `"py_error"`, and has a default `print` method
#' that is the equivalent of `cat(py_last_error()$message)`.
#'
#' @examples
#' \dontrun{
#'
#' # see last python exception with R traceback
#' reticulate::py_last_error()
#'
#' # see the full R callstack from the last Python exception
#' reticulate::py_last_error()$r_trace$full_call
#'
#' # run python code that might error,
#' # without modifying the user-visible python exception
#'
#' safe_len <- function(x) {
#' last_err <- py_last_error()
#' tryCatch({
#' # this might raise a python exception if x has no `__len__` method.
#' import_builtins()$len(x)
#' }, error = function(e) {
#' # py_last_error() was overwritten, is now "no len method for 'object'"
#' py_last_error(last_err) # restore previous exception
#' -1L
#' })
#' }
#'
#' safe_len(py_eval("object"))
#' }
#'
#' @export
py_last_error <- function(exception) {
if (!missing(exception)) {
if (is.null(exception))
return(.globals$py_last_exception <- .globals$last_r_trace <- NULL)
# set as the last exception
r_trace <- NULL
if (inherits(exception, "py_error")) {
r_trace <- exception$trace
exception <- attr(exception, "exception", TRUE)
}
if (is.null(r_trace))
r_trace <- as_r_value(py_get_attr(exception, "trace", TRUE))
if (!is.null(exception) &&
!inherits(exception, "python.builtin.Exception"))
stop("`exception` must be NULL, a `py_error`, or a 'python.builtin.Exception'")
on.exit({
.globals$py_last_exception <- exception
.globals$last_r_trace <- r_trace
})
return(invisible(.globals$py_last_exception))
}
e <- .globals$py_last_exception
if (is.null(e))
return(NULL)
if (!py_available() || py_is_null_xptr(e)) {
.globals$py_last_exception <- NULL
return(NULL)
}
etype <- py_get_attr(e, "__class__")
etb <- py_get_attr(e, "__traceback__", TRUE)
traceback <- import("traceback")
if(is.null(etb))
formatted_traceback <- NULL
else
formatted_traceback <- traceback$format_tb(etb)
out <- list(
type = py_get_attr(etype, "__name__", TRUE),
value = py_str_impl(e),
traceback = formatted_traceback,
message = paste0(traceback$format_exception(etype, e, etb),
collapse = "")
)
out$r_call <- conditionCall(e)
out$r_class <- as_r_value(py_get_attr(e, "r_class", TRUE)) %||% class(e)
out$r_trace <- py_get_attr(e, "trace", TRUE) %||% .globals$last_r_trace
out <- lapply(out, as_r_value)
attr(out, "exception") <- e
class(out) <- "py_error"
out
}
make_filepaths_clickable <- function(formatted_python_traceback) {
# Note, a first draft of this iterated over the list of FrameSummarys in
# the exception.__traceback__, but that approach breaks with keras.
# So now we use a regex instead (:sad:).
# See format_py_exception_traceback_with_clickable_filepaths()
# for the previous approach
x <- strsplit(formatted_python_traceback, "\n", fixed = TRUE)[[1L]]
if (!length(x))
return(formatted_python_traceback)
m <- regexec('File "([^"]+)", line ([0-9]+), in', x, perl = TRUE)
new <- lapply(regmatches(x, m), function(match) {
if (!length(match))
return(character())
filepath <- match[2]
lineno <- match[3]
if(!file.exists(file.path(filepath)))
return(filepath)
link <- cli::style_hyperlink(
filepath,
paste0("file://", normalizePath(filepath, mustWork = FALSE)),
params = c(line = lineno))
cli::col_grey(link)
})
m2 <- lapply(m, function(match_pos) {
if(identical(as.vector(match_pos), -1L))
return(match_pos)
out <- match_pos[2] # only match filepath
attr(out, "match.length") <- attr(match_pos, "match.length")[2]
out
})
regmatches(x, m2) <- new
if(x[length(x)] != "")
x <- c(x, "") # ensure we end w/ a newline
paste0(x, collapse = "\n")
}
## not exported because pillar only in suggests
## exported dynamically in .onLoad()
## @exportS3Method pillar::type_sum
type_sum.python.builtin.object <- function(x) {
s <- class(x)[[1L]]
if(startsWith(s, "R6type."))
s <- substr(s, 8L, 2147483647L)
s
}
#' @export
print.py_error <- function(x, ...) {
py_error_message <- x$message
if (identical(.Platform$GUI, "RStudio") &&
requireNamespace("cli", quietly = TRUE) &&
length(etb <- attr(x, "exception")$`__traceback__`))
py_error_message <- make_filepaths_clickable(py_error_message)
cat_h1("Python Exception Message")
cat(py_error_message)
cat_h1("R Traceback")
print(x$r_trace)
cat(.py_last_error_full_callstack_hint(), "\n", sep = "")
}
cat_h1 <- function(x) {
if(requireNamespace("cli", quietly = TRUE)) {
cli::cli_h1(x, .envir = NULL)
} else {
cat("--- ", x, "\n", sep = "")
}
}
format_py_exception_traceback_with_clickable_filepaths <- function(etb) {
# This is currently unused, but preserved here in case it's useful for future
# development. This is unused because keras/tensorflow hijacks the python
# exception __traceback__, making it effectively useless. Instead, keras
# formats the actual (user relevant) traceback info directly into the
# exception message (and nicely too! albeit verbosely. It includes detailed
# info about call args in each user frame, including tensor shapes and dtypes,
# and formats with indentation matching user-generated frame depth).
# Unfortunately, that means that building up a nice formatted traceback by
# iterating over the traceback FrameSummary objects won't work correctly. The
# alternative is to apply a regex to the message, as we do in
# make_filepaths_clickable() (:sad:)
if(is.null(etb)) return(NULL)
fsl <- import("traceback")$extract_tb(etb)
if(!length(fsl)) return(NULL)
paste0(collapse = "\n", c(
"Traceback (most recent call last):",
vapply(fsl, function(fs) {
# fs == FrameSummary obj, with attrs: filename, line, lineno, locals, name
filepath <- fs$filename
lineno <- fs$lineno
clickable_filepath <-
cli::style_hyperlink(
filepath,
paste0("file://", normalizePath(filepath, mustWork = FALSE)),
params = c(line = lineno)
)
sprintf(' File "%s", line %i, in %s\n %s',
clickable_filepath, lineno, fs$name, fs$line)
}, ""),
""))
}
.py_last_error_hint <- function() {
if(!interactive() ||
!identical(.Platform$GUI, "RStudio") ||
!requireNamespace("cli", quietly = TRUE))
return("Run `reticulate::py_last_error()` for details.")
py_last_error <- cli::style_hyperlink(
"`reticulate::py_last_error()`",
"rstudio:run:reticulate::py_last_error()")
cli::col_silver(paste("Run", py_last_error, "for details."))
}
.py_last_error_full_callstack_hint <- function() {
hint <- "See `reticulate::py_last_error()$r_trace$full_call` for more details."
if(!interactive() ||
!identical(.Platform$GUI, "RStudio") ||
!requireNamespace("cli", quietly = TRUE))
return(hint)
# # ide:run: / rstudio:run: links don't support expressions like this.
# last_error_unsummarized_callstack <- cli::style_hyperlink(
# "`reticulate::py_last_error()$r_trace$full_call`",
# "rstudio:run:reticulate::py_last_error()$r_trace$full_call")
# hint <- cli::col_silver(paste("See", last_error_unsummarized_callstack,
# "for more details."))
cli::col_silver(hint)
}
|