1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
---
title: "Arrays in R and Python"
output:
rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Arrays in R and Python}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
Dense data are stored contiguously in memory, addressed by a single index (the
memory address). Array memory ordering schemes translate that single index into
multiple indices corresponding to the array coordinates. For example, matrices
have two indices: rows and columns. Three-d arrays have three, and so on.
## Column-major order
*Column-major* order is used by Fortran, Matlab, R, and most underlying core
linear algebra libraries (BLAS). Sequential address locations are translated
into array coordinates *i, j, k, ...* so that the first array coordinates vary
most rapidly with address, the next array coordinates less rapidly, and so on.
For instance, four address locations 1, 2, 3, 4 are translated into a two by
two matrix coordinate system *(i, j)* as:
```
address i j
1 1 1
2 2 1
3 1 2
4 2 2
```
The phrase *column-major* comes from the matrix example, where sequentially
addressed data are laid out sequentially along columns of the matrix.
The concept of "row" and "column" don't directly apply to n-d arrays, but the
same idea holds. For instance the R language lays out sequential addresses from
1, 2, ..., 8, into a 2x2x2 3-d array as:
```
address i j k
1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 1 2
6 2 1 2
7 1 2 2
8 2 2 2
```
Consider the 3-d case shown above. Given array dimensions *d<sub>1</sub>=2, d<sub>2</sub>=2, d<sub>3</sub>=2*,
a formula that takes 1-based coordinates *i, j, k* and returns address location
*a* is
<br/>
*a = i + (j - 1) * d<sub>1</sub> + (k - 1) * d<sub>2</sub> * d<sub>1</sub>*.
## Row-major order
Row-major ordering is a different translation between sequential address
indices and array coordinates, instead laying sequential data in memory across
rows in matrices. Row-major ordering is sometimes called "C" style ordering
and column-major ordering "Fortran" style. Python/NumPy refers to the orderings
in array flags as C_CONTIGUOUS and F_CONTIGUOUS, respectively.
For instance
address locations 1, 2, 3, 4 are translated into a 2x2 matrix coordinate
system *(i, j)* as:
```
address i j
1 1 1
2 1 2
3 2 1
4 2 2
```
Efficient wrappers to BLAS routines exist for row-major ordered arrays.
For completeness, here is a 2x2x2 3-d example layout:
```
address i j k
1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2
```
And similarly to above a formula for this example that converts these 1-based
array coordinates to address indices is:
<br/>
*a = k + (j - 1) * d<sub>3</sub> + (i - 1) * d<sub>3</sub> * d<sub>2</sub>*.
See the following notes for a general formula for row- and column-order
coordinate to address mapping, but note the use of zero-based indexing.
- <https://en.wikipedia.org/wiki/Row-_and_column-major_order#Address_calculation_in_general>
- <https://numpy.org/doc/stable/reference/arrays.ndarray.html>
## Python
The Python NumPy library is very general. It can use *either* row-major or
column-major ordered arrays, but it defaults to row-major ordering.
NumPy also supports sophisticated *views* of data with custom strides across
non-contiguous regions of memory.
## Displaying arrays
R displays array data with unambiguously-labeled coordinate indices. Python
doesn't show this and displays n-d array data in different order than R (making
matters somewhat confusing for R users). Consider the following example that
creates and displays identical 4x3x2 arrays in R and Python:
```r
array(1:24, c(4,3,2))
## , , 1
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
##
## , , 2
## [,1] [,2] [,3]
## [1,] 13 17 21
## [2,] 14 18 22
## [3,] 15 19 23
## [4,] 16 20 24
```
```python
import numpy as np
np.reshape(np.arange(1,25), (4,3,2), "F")
## array([[[ 1, 13],
## [ 5, 17],
## [ 9, 21]],
##
## [[ 2, 14],
## [ 6, 18],
## [10, 22]],
##
## [[ 3, 15],
## [ 7, 19],
## [11, 23]],
##
## [[ 4, 16],
## [ 8, 20],
## [12, 24]]])
```
It's easier to know which coordinates go where in R because they are labeled.
Python, using column-major ordering, displays the same thing but in a different
order where the first indices are grouped together in order. To see that these
arrays are, in fact, **the same**, let's pick out values along just the first
"row", that is values with a first index of 1 (R) or 0 (Python):
```r
array(1:24, c(4, 3, 2))[1,, ,drop=FALSE]
## , , 1
## [,1] [,2] [,3]
## [1,] 1 5 9
##
## , , 2
## [,1] [,2] [,3]
## [1,] 13 17 21
```
```python
np.reshape(np.arange(1,25), (4,3,2), "F")[0]
## array([[ 1, 13],
## [ 5, 17],
## [ 9, 21]])
```
I specified R's `drop=FALSE` argument to preserve array dimensionality above.
If we use `drop=TRUE` (the default) then R returns a 3x2 array in column-major
order--exactly the same result as Python above.
```r
array(1:24, c(4, 3, 2))[1,, ,drop=TRUE]
## [,1] [,2]
## [1,] 1 13
## [2,] 5 17
## [3,] 9 21
```
Note that the Python result is a special view of the original array data, not
a copy. In this case it's not stored in contiguous memory addresses and is
neither really row- nor column-major. This is shown in the array flags:
```python
np.reshape(np.arange(1,25), (4,3,2), "F")[0].flags
## C_CONTIGUOUS : False
## F_CONTIGUOUS : False
## OWNDATA : False
## WRITEABLE : True
## ALIGNED : True
## UPDATEIFCOPY : False
```
## Reticulate with care
The reticulate package lets us easily mix R and Python code and data. Recall
that R represents all dense arrays in column-major order but Python/NumPy can
represent dense arrays much more generally. That difference warrants attention
and can easily lead to confusion!
Remember the following things when working with R and Python arrays, especially
*n*-d arrays with *n > 2*.
1. Dense R arrays are presented to Python/NumPy as column-major NumPy arrays.
2. *All* NumPy arrays (column-major, row-major, otherwise) are presented to R as column-major arrays, because that is the only kind of dense array that R understands.
3. R and Python print arrays differently.
Also worth knowing:
- Python array indices are zero-based, R indices are 1-based.
- R arrays are only copied to Python when they need to be, otherwise data are shared.
- Python arrays are *always* copied when moved into R arrays. This can sometimes lead to three copies of any one array in memory at any one time (at the moment this was written). Future versions will reduce that copy overhead to two.
Point number 3. introduces the most potential confusion. Let's look at some examples
to explore these points.
The following example creates a 2x2x2 array in Python using native NumPy
row-major ordering and imports it into R. Despite the fact that they print out
differently, they are in fact the same.
```r
library(reticulate)
np <- import("numpy", convert=FALSE)
(x <- np$arange(1, 9)$reshape(2L, 2L, 2L))
## [[[ 1. 2.]
## [ 3. 4.]]
##
## [[ 5. 6.]
## [ 7. 8.]]]
(y <- py_to_r(x))
## , , 1
## [,1] [,2]
## [1,] 1 3
## [2,] 5 7
##
## , , 2
## [,1] [,2]
## [1,] 2 4
## [2,] 6 8
```
Wait a minute! They look different! But remember Python's print order is different.
The first "rows" (first index values) are grouped together. Let's pull out elements
with first index of 1 in the R result, with and without dropping the unused dimension
to show precisely what we're indexing here:
```r
y[1,,, drop=FALSE]
## , , 1
## [,1] [,2]
## [1,] 1 3
##
## , , 2
## [,1] [,2]
## [1,] 2 4
y[1,,, drop=TRUE]
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```
Note that this is the same as the first block printed in the Python output above!
These arrays really are the same in Python and R, respectively. Their apparent
differences are merely a result of printing.
### Another example
Let's look at this again with another example, this time with an array with
different lengths along each dimension to make things even more clear
(hopefully). Consider the following 4x3x2 array constructed in Python in
row-major order:
```r
np <- import("numpy", convert=FALSE)
(x <- np$reshape(np$arange(1, 25), c(4L, 3L, 2L)))
## [[[ 1. 2.]
## [ 3. 4.]
## [ 5. 6.]]
##
## [[ 7. 8.]
## [ 9. 10.]
## [ 11. 12.]]
##
## [[ 13. 14.]
## [ 15. 16.]
## [ 17. 18.]]
##
## [[ 19. 20.]
## [ 21. 22.]
## [ 23. 24.]]]
(y <- py_to_r(x))
## , , 1
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 7 9 11
## [3,] 13 15 17
## [4,] 19 21 23
##
## , , 2
## [,1] [,2] [,3]
## [1,] 2 4 6
## [2,] 8 10 12
## [3,] 14 16 18
## [4,] 20 22 24
```
Again, they look quite different but the R and Python arrays are really the
same. Let's pick out the sub-array with third index = 0 (Python), equivalently
the third index = 1 in R.
```r
np$take(x, 0L, 2L)
## [[ 1. 3. 5.]
## [ 7. 9. 11.]
## [ 13. 15. 17.]
## [ 19. 21. 23.]]
y[, , 1]
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 7 9 11
## [3,] 13 15 17
## [4,] 19 21 23
```
The NumPy `take()` function is equivalent in this example to the Python
notation `x[:, :, 0]`; that is, entries with third dimension index = 0.
See <https://numpy.org/doc/stable/reference/generated/numpy.take.html>
for more information.
The corresponding R notation, `y[, , 1]`, returns the same thing in this
example: a 4x3 matrix.
Despite different internal memory ordering, and particularly despite awkward
differences in printing arrays, the arrays are the same and are indexed the
same way in each language respectively.
## What about going from R column-major arrays to Python?
The previous examples focused on row-major arrays natively constructed in
Python. Let's see what happens when we start with column-major arrays from R
and work with them in Python.
```r
(y <- array(1:24, c(4, 3, 2))) # In R
## , , 1
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
##
## , , 2
## [,1] [,2] [,3]
## [1,] 13 17 21
## [2,] 14 18 22
## [3,] 15 19 23
## [4,] 16 20 24
(x <- np$array(y)) # and now in Python
## [[[ 1 13]
## [ 5 17]
## [ 9 21]]
##
## [[ 2 14]
## [ 6 18]
## [10 22]]
##
## [[ 3 15]
## [ 7 19]
## [11 23]]
##
## [[ 4 16]
## [ 8 20]
## [12 24]]]
```
Note that the Python version takes advantage of NumPy's extraordinary
flexibility and preserves R's column-major ordering:
```r
x$flags
## C_CONTIGUOUS : False
## F_CONTIGUOUS : True
## OWNDATA : True
## WRITEABLE : True
## ALIGNED : True
## UPDATEIFCOPY : False
```
You can probably tell already from the previous sections that these arrays
are the same, and obey the same indexing conventions. The next example
selects a subarray such that the third index of each array is 0 (Python)
or 1 (R):
```r
y[, , 1]
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
np$take(x, 0L, 2L)
## [[ 1 5 9]
## [ 2 6 10]
## [ 3 7 11]
## [ 4 8 12]]
```
It's important to remember that the order is preserved from Python when
copying an array result back into R:
```r
py_to_r(np$take(x, 0L, 2L))
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 2 6 10
## [3,] 3 7 11
## [4,] 4 8 12
```
_**The upshot is that arrays created by either R or Python are indexed exactly the
same in either language.**_
### But the array I created in R ends up transposed compared to ones I create in Python?
Right. That's just a simple consequence of the default column-major and
row-major formats used in R and NumPy respectively. You are always free to use
R's column-major format directly in Python, for example using the "F" flag
below (for Fortran):
```r
np$reshape(np$arange(1, 25), c(4L, 3L, 2L), "F")
## [[[ 1. 13.]
## [ 5. 17.]
## [ 9. 21.]]
##
## [[ 2. 14.]
## [ 6. 18.]
## [ 10. 22.]]
##
## [[ 3. 15.]
## [ 7. 19.]
## [ 11. 23.]]
##
## [[ 4. 16.]
## [ 8. 20.]
## [ 12. 24.]]]
```
Note that the result is just like the one we got starting from R above.
Re-arranging R arrays into row-major order requires more work. R is less
flexible than Python and we can't explicitly change R's memory order
representation. When the array is a matrix when we can simply use
`byrow=TRUE`. In the n-d array case, a portion of the problem can be reduced to
using `byrow=TRUE` followed by judicious index permutation with `aperm()`.
Here is one somewhat inefficient example:
```r
y <- aperm(array(matrix(1:24, c(3 * 4, 2), byrow=TRUE),
c(3, 4, 2)), c(2, 1, 3))
```
See the last section below for a different example.
We can verify that the above ugly expression exactly reproduces a NumPy
row-major array by subtracting our R array from a native Python one:
```r
np <- import("numpy", convert=FALSE)
o <- import("operator", convert=FALSE)
o$sub(np$arange(1, 25)$reshape(4L, 3L, 2L), np$array(y))
## [[[ 0. 0.]
## [ 0. 0.]
## [ 0. 0.]]
##
## [[ 0. 0.]
## [ 0. 0.]
## [ 0. 0.]]
##
## [[ 0. 0.]
## [ 0. 0.]
## [ 0. 0.]]
##
## [[ 0. 0.]
## [ 0. 0.]
## [ 0. 0.]]]
```
The above NumPy arrays are the same, their element-wise difference is zero.
### Reshaping arrays
In R you would typically reshape an array using the `dim<-()` function. For example:
```r
dim(x) <- c(1000, 28, 28)
```
In R, this operation simply changes the "dim" attribute of the array, effectively
re-interpreting the array indices as specified using column-major semantics.
However, the NumPy `reshape` method uses row-major semantics by default, so if you are mixing
R and Python code that reshapes arrays you will find that the reshaping will be
inconsistent if you use the R `dim<-()` function.
To overcome this inconsistency, there is an `array_reshape()` function which will
reshape an R array using row-major semantics (i.e. will fill the new dimensions
in row-major rather than col-major order). The example above would be re-written as:
```r
x <- array_reshape(x, c(1000, 28, 28))
```
Here's a further example to illustrate the difference:
```r
# let's construct a 2x2 array from a vector of 4 elements
x <- 1:4
# rearrange will fill the array row-wise
array_reshape(x, c(2, 2))
# [,1] [,2]
# [1,] 1 2
# [2,] 3 4
# setting the dimensions 'fills' the array col-wise
dim(x) <- c(2, 2)
x
# [,1] [,2]
# [1,] 1 3
# [2,] 2 4
```
## Other differences warranting caution
It's worth noting that analogs of R's `apply()` function in Python behave
differently. The following excellent Mathesaurus reference
https://mathesaurus.sourceforge.net/r-numpy.html applies well to matrices and
vectors, but is misleading for *n*-d arrays with *n > 2*.
In particular, Mathesaurus says that if *a* is a _matrix_, then the sum of each
column in Python may be computed by `a.sum(0)`, and in R (among other possible
ways) by `apply(a, 2, sum)`. Although correct for matrices, this is in general
not quite right. A more precise R analog of NumPy's `a.sum(0)` is
`apply(a, seq_along(dim(a))[-1], sum)`.
In other words, `a.sum(0)` means sum over the first dimension, returning
an array of the same dimensions as *a* but with the first dimension removed.
It's easy to be confused by this, so let's see an example using a 4x3x2
array, first in Python:
```r
library(reticulate)
np <- import("numpy", convert=FALSE)
x <- np$arange(1, 25)$reshape(c(4L, 3L, 2L))
x$sum(0) # N. B. a 3x2 matrix!
## [[ 40. 44.]
## [ 48. 52.]
## [ 56. 60.]]
# N. B. A tuple() object is required here (NumPy vectors won't work)
x$sum(tuple(1L, 2L))
## [ 21. 57. 93. 129.]
```
And now the corresponding sums in R:
```r
y <- py_to_r(x)
apply(y, dim(y)[-1], sum)
## [,1] [,2] [,3]
## [1,] 40 48 56
## [2,] 44 52 60
apply(y, 1, sum)
## [1] 21 57 93 129
```
# Addressing an issue that came up
These notes were prepared in response to a tensorflow issue now in the
reticulate package https://github.com/rstudio/reticulate/issues/9.
The issue directly gets to a common source of confusion with n-d
arrays in R and Python and how they are printed and stored.
A lightly-edited reproduction of the reference Python code in the issue
appears below.
```r
library(tensorflow)
np <- import("numpy", convert=FALSE)
a <- np$arange(1, 9)$reshape(c(2L, 2L, 2L))
b <- np$arange(1, 5)$reshape(c(2L, 2L, 1L))
c <- tf$matmul(tf$constant(a), tf$constant(b))
tf$Session()$run(c)
## , , 1
## [,1] [,2]
## [1,] 5 11
## [2,] 39 53
```
The issue goes on to reproduce the example using R-generated arrays
as follows:
```r
A <- list(matrix(1:4, nrow=2, byrow=T), matrix(5:8, nrow=2, byrow=T))
A <- array(unlist(A), dim=c(2,2,2))
```
However, already at this point we see that the R-generated array *A* is
not the same as the above array *a* by comparing *a* with
`np$array(A)` below.
However, we can see how it can be easy to make the mistake that they are the
same simply because of the way the arrays are printed! The R array looks
superficially the same as the printed Python array.
```r
print(a)
## [[[ 1. 2.]
## [ 3. 4.]]
##
## [[ 5. 6.]
## [ 7. 8.]]]
print(np$array(A))
## [[[1 5]
## [2 6]]
##
## [[3 7]
## [4 8]]]
print(A)
## , , 1
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
##
## , , 2
## [,1] [,2]
## [1,] 5 6
## [2,] 7 8
```
Instead, we need to construct the R array *A* differently to match the
row-major order of Python, discussed in the previous sections. We can
use many approaches including:
```r
(A <- np$array(aperm(array(1:8, c(2,2,2)), c(3,2,1))))
## [[[1 2]
## [3 4]]
##
## [[5 6]
## [7 8]]]
```
With similar care ordering the values in the *b* array
we can finish replicating the example in R (with the same
result as the reference Python example above).
```r
A <- np$array(aperm(array(1:8, c(2,2,2)), c(3,2,1)))
B <- np$array(aperm(array(1:4, c(2,2,1)), c(2,1,3)))
C <- tf$matmul(tf$constant(A), tf$constant(B))
tf$Session()$run(C)
## , , 1
## [,1] [,2]
## [1,] 5 11
## [2,] 39 53
```
|