1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
---
title: "Using reticulate in an R Package"
output:
rmarkdown::html_vignette
editor_options:
markdown:
wrap: 80
vignette: >
%\VignetteIndexEntry{Using reticulate in an R Package}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
## Declaring Python Requirements
R package authors can use reticulate to make Python packages accessible to users
from R. This vignette documents best practices for how package authors can
declare and import their package's Python dependencies.
While `reticulate::import()` can be used to load a Python module, it does not
provide any mechanism for installing a Python package and actually making sure
the module is available. `reticulate::py_require()` helps fill that gap, by
giving R package authors a way to declare their Python package dependencies in a
way that can be collated and respected across multiple packages using
reticulate, each with their own unique requirements.
Beginning with Reticulate version 1.41, R packages can declare Python
requirements with `py_require()`. Python package dependencies requested via
`py_require()` will automatically be provisioned and made available for the user
when the Python session is later initialized, via an ephemeral Python virtual
environment. These requested packages can then be imported and used within your
R package as required.
### Typical Usage
`py_require()` is typically called from `.onLoad()`, as shown below:
``` r
.onLoad <- function(libname, pkgname) {
reticulate::py_require("scipy")
}
```
`py_require()` can also be called from other package functions to modify
dependencies after the package has loaded. This is useful for packages that
support multiple configurations.
For example, the `keras3` R package supports multiple backends. In `.onLoad()`,
`keras3` configures a default backend, but users can choose a different one
using the `use_backend()` function. This function calls `py_require()` with
different values based on the selected backend:
``` r
.onLoad <- function(...) {
py_require("keras")
use_backend("tensorflow") # Default to TensorFlow
}
#' @export
use_backend <- function(backend, gpu = TRUE) {
py_require("tensorflow", action = "remove") # Remove default backend
switch(paste0(backend, "_", get_os()),
jax_Linux = if (gpu) py_require("jax[cuda12]") else py_require("jax[cpu]"),
jax_macOS = py_require(c("jax", if (gpu) "jax-metal")),
jax_Windows = py_require("jax"),
tensorflow_Linux = { ... },
tensorflow_macOS = { ... },
tensorflow_Windows = { ... },
torch_Linux = { ... },
torch_macOS = { ... },
torch_Windows = { ... }
)
}
```
`keras3` users can then specify a backend like this:
``` r
library(keras3)
use_backend("jax")
```
### Best Practices
Calling `py_require()` from a package is generally safe and recommended. It
ensures dependencies are declared while having no effect on users who manage
their own Python environments. `py_require()` replaces older approaches, such as
listing dependencies in the `DESCRIPTION` file or calling
`use_virtualenv(required = FALSE)` in `.onLoad()`.
Be mindful that other R packages and users may also declare Python requirements.
Avoid restrictive version constraints. If a version constraint is necessary,
prefer `>=` and `!=` over `<=`, as the latter can quickly become outdated. Also,
be mindful that an R package's requirements will be combined with a potentially
wide variety of user requirements, like `exclude_newer`.
An example user script header:
``` r
library(pysparklyr) # declares requirements for PySpark
library(keras3) # declares requirements for default 'tensorflow' backend
use_backend("jax") # removes 'tensorflow' requirements, adds 'jax' requirements
library(reticulate)
py_require(c("scipy", "polars")) # user-declared requirements
py_require(python_version = ">=3.12")
py_require(exclude_newer = "2025-02-20")
np <- import("numpy") # <-- Python initialized
...
```
### Declaring Optional Dependencies
It's recommended that all `py_require()` calls be made before reticulate
initializes the Python session. However, for rarely used optional dependencies,
the requirement can be declared right before use:
``` r
model_to_dot <- function(x, ...) {
reticulate::py_require("pydot")
keras$utils$model_to_dot(x, ...)
}
```
Calling `py_require()` after Python has initialized causes reticulate to
activate a new ephemeral virtual environment containing the additional
requirements. Only adding packages is permitted after Python has initialized;
calling `py_require()` with `action="set"` or `action="remove"` is not possible.
## Delay Loading Python Modules
If your R package wraps Python modules, it's common to import them within
`.onLoad()`. Use the `delay_load` flag in `import()` to allow:
1. Successful R package loading even when Python packages are not installed
(important for CRAN testing).
2. Users to specify their Python installation before using your package.
Example:
``` r
scipy <- NULL
.onLoad <- function(libname, pkgname) {
reticulate::py_require("scipy")
scipy <<- reticulate::import("scipy", delay_load = TRUE)
}
```
Without `delay_load`, Python would load immediately, preventing users from
configuring their environment.
## Installing Python Dependencies
`py_require()` is the recommended approach for managing Python dependencies.
However, for users who prefer to manually manage a Python installation, you can
document what Python packages are required.
The `py_install()` function provides a high-level interface for installing
Python packages. The packages will by default be installed within the currently
active Python installation.
``` r
library(reticulate)
py_install("scipy")
```
Alternatively, create a wrapper function for `py_install()` (or
`virtualenv_create()`) that installs dependencies in a dedicated environment:
``` r
install_scipy <- function(envname = "r-scipy", method = "auto", ...) {
reticulate::py_install("scipy", envname = envname, method = method, ...)
}
```
Note that calling `py_install()` on an ephemeral environment generated from
`py_require()` declared requirements will generate a warning.
## Checking and Testing on CRAN
To ensure your package is well behaved on CRAN:
1. Use `delay_load` to defer module loading:
``` r
scipy <- NULL
.onLoad <- function(libname, pkgname) {
# delay load foo module (will only be loaded when accessed via $)
scipy <<- reticulate::import("scipy", delay_load = TRUE)
}
```
2. Skip tests when required modules are unavailable:
``` r
skip_if_no_scipy <- function() {
if (!reticulate::py_module_available("scipy"))
skip("scipy not available for testing")
}
test_that("Things work as expected", {
skip_if_no_scipy()
# test code here...
})
```
## Implementing S3 Methods
Python objects exposed by **reticulate** retain their Python classes in R,
allowing you to define S3 methods for them. This can be useful for customizing
how objects are printed or structured in R. However, Python objects do not
persist across R sessions, meaning an R object that previously pointed to a
Python object will become a `NULL` external pointer when reloaded.
To safely handle these cases, use `py_is_null_xptr()`, as shown in this example:
``` r
print.my_python_object <- function(x, ...) {
if (py_is_null_xptr(x)) {
cat("<Python object is no longer available>\n")
} else {
cat(py_to_r(x))
}
}
```
This prevents errors when interacting with a Python object from a previous
session.
This prevents errors when attempting to interact with a Python object from a
previous session.
### Supporting Versions with Different S3 Classes
The Python S3 method for an object is generated from the Python modules and
submodules where the object is defined. In sophisticated Python packages, this
path might change between package versions. For instance, you can access the
`Model` object from `keras.Model` in Python. However, depending on the Keras
Python package version, the actual class definition for `Model` may be located
in a submodule like `keras._internals.src` or `keras._internals.models`, and
since the class module path is considered an internal implementation detail of
the Python package, it can vary across Python package versions. As a result, the
S3 class for the Python object will also change, depending on the Python package
version.
To support changing S3 classes, instead of registering methods in NAMESPACE with
roxygen, manually register them in `.onLoad()`:
``` r
# Python class `DocumentConverterResult` changes with different MarkItDown versions.
py_to_r.markitdown.DocumentConverterResult <- function(x) {
paste0("# ", x$title, "\n\n", x$text_content)
}
.onLoad <- function(libname, pkgname) {
reticulate::py_require("markitdown")
reticulate:::py_register_load_hook("markitdown", function() {
markitdown <- reticulate::import("markitdown")
registerS3method(
"py_to_r",
nameOfClass(markitdown$DocumentConverterResult),
py_to_r.markitdown.DocumentConverterResult,
environment(reticulate::py_to_r)
)
})
}
```
### Converting between R and Python
**reticulate** provides the generics `r_to_py()` for converting R objects into
Python objects, and `py_to_r()` for converting Python objects back into R
objects. Package authors can provide methods for these generics to convert
Python and R objects otherwise not handled by **reticulate**.
**reticulate** provides conversion operators for some of the most commonly used
Python objects, including:
- Built-in Python objects (lists, dictionaries, numbers, strings, tuples)
- NumPy arrays,
- Pandas objects (`Index`, `Series`, `DataFrame`),
- Python `datetime` objects.
If you see that **reticulate** is missing support for conversion of one or more
objects from these packages, please [let us
know](https://github.com/rstudio/reticulate/issues) and we'll try to implement
the missing converter. For Python packages not in this set, you can provide
conversion operators in your own extension package.
### Writing your own `r_to_py()` methods
`r_to_py()` accepts a `convert` argument, which controls how objects generated
from the created Python object are converted. To illustrate, consider the
difference between these two cases:
``` r
library(reticulate)
# [convert = TRUE] => convert Python objects to R when appropriate
sys <- import("sys", convert = TRUE)
class(sys$path)
# [1] "character"
# [convert = FALSE] => always return Python objects
sys <- import("sys", convert = FALSE)
class(sys$path)
# [1] "python.builtin.list" "python.builtin.object"
```
This is accomplished through the use of a `convert` flag, which is set on the
Python object wrappers used by `reticulate`. Therefore, if you're writing a
method `r_to_py.foo()` for an object of class `foo`, you should take care to
preserve the `convert` flag on the generated object. This is typically done by:
1. Passing `convert` along to the appropriate lower-level `r_to_py()` method;
2. Explicitly setting the `convert` attribute on the returned Python object.
As an example of the second:
``` r
# suppose 'make_python_object()' creates a Python object
# from R objects of class 'my_r_object'.
r_to_py.my_r_object <- function(x, convert) {
object <- make_python_object(x)
assign("convert", convert, envir = object)
object
}
```
## Using GitHub Actions
For testing R packages with GitHub Actions, dependencies declared via
`py_require()` will resolve automatically with no additional steps. If there are
extra Python test dependencies, declare them using `py_require()` in
`tests/testthat/helper.R`. The standard R-CMD-check workflow should work:
``` yaml
- uses: r-lib/actions/setup-r@v2
- uses: r-lib/actions/setup-r-dependencies@v2
with:
extra-packages: rcmdcheck
- uses: r-lib/actions/check-r-package@v2
```
Optionally, you can pre-download Python dependencies in a separate step for
cleaner CI logs:
``` yaml
- uses: r-lib/actions/setup-r@v2
with:
r-version: release
- uses: r-lib/actions/setup-r-dependencies@v2
with:
extra-packages: rcmdcheck local::.
- run: |
library(mypackage) # <-- declare requirements in .onLoad()
reticulate::py_config() # <-- resolves the ephemeral python environment
- uses: r-lib/actions/check-r-package@v2
# The ephemeral python environment from previous step is reused from cache.
```
If you prefer to use a manually managed Python environment, you can do this:
``` yaml
- uses: actions/setup-python@v4
with:
python-version: "3.x"
- name: setup r-reticulate venv
shell: Rscript {0}
run: |
path_to_python <- reticulate::virtualenv_create(
envname = "r-reticulate",
python = Sys.which("python"),
packages = c("numpy", "other-packages")
)
writeLines(sprintf("RETICULATE_PYTHON=%s", path_to_python),
Sys.getenv("GITHUB_ENV"))
- uses: r-lib/actions/check-r-package@v2
```
|