1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/wrapper.R
\name{py_function_custom_scaffold}
\alias{py_function_custom_scaffold}
\title{Custom Scaffolding of R Wrappers for Python Functions}
\usage{
py_function_custom_scaffold(
python_function,
r_function = NULL,
additional_roxygen_fields = NULL,
process_docs_fn = function(docs) docs,
process_param_fn = function(param, docs) param,
process_param_doc_fn = function(param_doc, docs) param_doc,
postprocess_fn = function() {
},
file_name = NULL
)
}
\arguments{
\item{python_function}{Fully qualified name of Python function or class
constructor (e.g. \code{tf$layers$average_pooling1d})}
\item{r_function}{Name of R function to generate (defaults to name of Python
function if not specified)}
\item{additional_roxygen_fields}{A list of additional roxygen fields to write
to the roxygen docs, e.g. \code{list(export = "", rdname = "generated-wrappers")}.}
\item{process_docs_fn}{A function to process docs obtained from
\code{reticulate::py_function_docs(python_function)}.}
\item{process_param_fn}{A function to process each parameter needed for
\code{python_funcion} before executing \code{python_funcion.}}
\item{process_param_doc_fn}{A function to process the roxygen docstring for
each parameter.}
\item{postprocess_fn}{A function to inject any custom code in the form of a
string before writing the closing curly braces for the generated wrapper
function.}
\item{file_name}{The file name to write the generated wrapper function to. If
\code{NULL}, the generated wrapper will only be printed out in the console.}
}
\description{
This function can be used to generate R wrapper for a specified
Python function while allowing to inject custom code for critical parts of
the wrapper generation, such as process the any part of the docs obtained
from \code{\link[=py_function_docs]{py_function_docs()}} and append additional roxygen fields. The result
from execution of \code{python_function} is assigned to a variable called
\code{python_function_result} that can also be processed by \code{postprocess_fn}
before writing the closing curly braces for the generated wrapper function.
}
\examples{
\dontrun{
library(tensorflow)
library(stringr)
# Example of a `process_param_fn` to cast parameters with default values
# that contains "L" to integers
process_int_param_fn <- function(param, docs) {
# Extract the list of parameters that have integer values as default
int_params <- gsub(
" = [-]?[0-9]+L",
"",
str_extract_all(docs$signature, "[A-z]+ = [-]?[0-9]+L")[[1]])
# Explicitly cast parameter in the list obtained above to integer
if (param \%in\% int_params) {
param <- paste0("as.integer(", param, ")")
}
param
}
# Note that since the default value of parameter `k` is `1L`. It is wrapped
# by `as.integer()` to ensure it's casted to integer before sending it to `tf$nn$top_k`
# for execution. We then print out the python function result.
py_function_custom_scaffold(
"tf$nn$top_k",
r_function = "top_k",
process_param_fn = process_int_param_fn,
postprocess_fn = function() { "print(python_function_result)" })
}
}
|