1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
context("arrays")
expect_reshape <- function(r, dim) {
expect_equal(
array_reshape(r, dim = dim),
py_to_r(array_reshape(r_to_py(r), dim = dim))
)
}
test_that("rearray reshapes R, Python vectors similarily", {
skip_if_no_numpy()
# simple reshaping
expect_reshape(1:4, c(2, 2))
expect_reshape(matrix(1:8, nrow = 2), c(2, 2, 2))
# more complicated reshaping
a <- array(1:20, dim = c(2, 3, 4))
expect_reshape(a, c(2, 12))
expect_reshape(a, c(12, 2))
expect_reshape(a, c(2, 6, 2))
expect_reshape(a, c(6, 2, 2))
expect_reshape(a, c(2, 2, 3, 2))
expect_reshape(a, c(3, 2, 2, 2))
})
test_that("rearray and dim<- don't do the same thing", {
skip_if_no_numpy()
x <- 1:4
r <- array_reshape(x, c(2, 2))
dim(x) <- c(2, 2)
expect_false(identical(r, x))
})
test_that("logical arrays convert correctly", {
# logical arrays convert to numpy arrays that are
# strided views of the underlying LGLSXP buffer
# a little extra testing makes sense.
skip_if_no_numpy()
# create logical and integer arrays in R
larr <- function(...) array(c(T, T, F), c(...))
iarr <- function(...) array(seq(prod(c(...))), c(...))
dim <- c(2, 3)
py_apply_mask <- py_run_string("
def apply_mask(x, mask):
if not x.flags.writeable:
x = x.copy()
x[mask] = 0
return x
")$apply_mask
r_apply_mask <- function(x, mask) {
if(is_py_object(x) && !py_to_r(x$flags$writeable))
x <- x$copy()
x[mask] <- 0L
x
}
dim <- c(2, 3, 4, 5)
for (dim in list(c(3), c(4), c(5),
c(2, 2), c(2, 3), c(3, 2),
c(2, 2, 2), c(3, 3, 3), c(4, 5, 6), c(6, 5, 4),
c(2, 2, 3), c(2, 3, 2), c(3, 2, 2),
c(2, 2, 2, 2), c(2, 3, 4, 5))) {
# Create logical and integer arrays in R
r_logical_array <- larr(dim)
r_index_array <- iarr(dim)
py_logical_array <- r_to_py(r_logical_array)
py_index_array <- r_to_py(r_index_array)
if (is_windows()) # not sure why ints cast to doubles on windows
storage.mode(r_index_array) <- "double"
# check that round-triping gives an identical array
expect_identical(r_logical_array, py_to_r(py_logical_array))
expect_identical(r_index_array, py_to_r(py_index_array))
r_subset_result <- r_index_array[r_logical_array]
py_subset_result <- py_index_array[py_logical_array]
r_from_py_subset_result <- py_to_r(py_subset_result)
# Check that subsetting works.
# The results should be equivalent, not identical
# In numpy boolean array indexing, the search order is row-major, C-style
# In R logical array indexing, the search order is column-major, Fortran-style
expect_identical(as.array(r_subset_result),
as.array(sort(r_from_py_subset_result)))
# check that subsetting assignment works identically
expect_identical(
py_apply_mask(r_index_array, r_logical_array),
r_apply_mask(r_index_array, r_logical_array))
expect_identical(
py_apply_mask(py_index_array, py_logical_array),
py_to_r( r_apply_mask(py_index_array, py_logical_array)))
}
})
test_that("StringDtype arrays convert correctly", {
np <- import("numpy", convert = FALSE)
StringDType <- tryCatch(np$dtypes$StringDType, error = function(e) NULL)
if(is.null(StringDType))
skip("No NumPy StringDType (numpy<2.0)")
data <- c("this is a longer string", "short string")
x <- np$array(data, dtype=StringDType())
expect_true(startsWith(py_to_r(x$dtype$name), "StringDType"))
expect_identical(py_to_r(x), array(data))
})
|