File: test-python-arrays.R

package info (click to toggle)
r-cran-reticulate 1.41.0.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,088 kB
  • sloc: cpp: 5,154; python: 620; sh: 13; makefile: 2
file content (124 lines) | stat: -rw-r--r-- 3,597 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
context("arrays")

expect_reshape <- function(r, dim) {
  expect_equal(
    array_reshape(r, dim = dim),
    py_to_r(array_reshape(r_to_py(r), dim = dim))
  )
}

test_that("rearray reshapes R, Python vectors similarily", {
  skip_if_no_numpy()

  # simple reshaping
  expect_reshape(1:4, c(2, 2))
  expect_reshape(matrix(1:8, nrow = 2), c(2, 2, 2))

  # more complicated reshaping
  a <- array(1:20, dim = c(2, 3, 4))
  expect_reshape(a, c(2, 12))
  expect_reshape(a, c(12, 2))
  expect_reshape(a, c(2, 6, 2))
  expect_reshape(a, c(6, 2, 2))
  expect_reshape(a, c(2, 2, 3, 2))
  expect_reshape(a, c(3, 2, 2, 2))
})

test_that("rearray and dim<- don't do the same thing", {
  skip_if_no_numpy()

  x <- 1:4
  r <- array_reshape(x, c(2, 2))
  dim(x) <- c(2, 2)
  expect_false(identical(r, x))
})



test_that("logical arrays convert correctly", {
  # logical arrays convert to numpy arrays that are
  # strided views of the underlying LGLSXP buffer
  # a little extra testing makes sense.
  skip_if_no_numpy()

  # create logical and integer arrays in R
  larr <- function(...) array(c(T, T, F), c(...))
  iarr <- function(...) array(seq(prod(c(...))), c(...))

  dim <- c(2, 3)

  py_apply_mask <- py_run_string("
def apply_mask(x, mask):
  if not x.flags.writeable:
    x = x.copy()
  x[mask] = 0
  return x
")$apply_mask

  r_apply_mask <- function(x, mask) {
    if(is_py_object(x) && !py_to_r(x$flags$writeable))
      x <- x$copy()
    x[mask] <- 0L
    x
  }

  dim <- c(2, 3, 4, 5)
  for (dim in list(c(3), c(4), c(5),
                   c(2, 2), c(2, 3), c(3, 2),
                   c(2, 2, 2), c(3, 3, 3), c(4, 5, 6), c(6, 5, 4),
                   c(2, 2, 3), c(2, 3, 2), c(3, 2, 2),
                   c(2, 2, 2, 2), c(2, 3, 4, 5))) {

    # Create logical and integer arrays in R
    r_logical_array <- larr(dim)
    r_index_array <- iarr(dim)

    py_logical_array <- r_to_py(r_logical_array)
    py_index_array <- r_to_py(r_index_array)

    if (is_windows()) # not sure why ints cast to doubles on windows 
       storage.mode(r_index_array) <- "double"
    # check that round-triping gives an identical array
    expect_identical(r_logical_array, py_to_r(py_logical_array))
    expect_identical(r_index_array, py_to_r(py_index_array))

    r_subset_result <- r_index_array[r_logical_array]
    py_subset_result <- py_index_array[py_logical_array]

    r_from_py_subset_result <- py_to_r(py_subset_result)

    # Check that subsetting works.
    # The results should be equivalent, not identical
    # In numpy boolean array indexing, the search order is row-major, C-style
    # In R logical array indexing, the search order is column-major, Fortran-style
    expect_identical(as.array(r_subset_result),
                     as.array(sort(r_from_py_subset_result)))

    # check that subsetting assignment works identically
    expect_identical(
              py_apply_mask(r_index_array, r_logical_array),
               r_apply_mask(r_index_array, r_logical_array))
    expect_identical(
              py_apply_mask(py_index_array, py_logical_array),
      py_to_r( r_apply_mask(py_index_array, py_logical_array)))

  }

})


test_that("StringDtype arrays convert correctly", {

  np <- import("numpy", convert = FALSE)

  StringDType <- tryCatch(np$dtypes$StringDType, error = function(e) NULL)
  if(is.null(StringDType))
    skip("No NumPy StringDType (numpy<2.0)")

  data <- c("this is a longer string", "short string")

  x <- np$array(data, dtype=StringDType())
  expect_true(startsWith(py_to_r(x$dtype$name), "StringDType"))

  expect_identical(py_to_r(x), array(data))
})