File: rinside_interactive0.cpp

package info (click to toggle)
r-cran-rinside 0.2.19-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 668 kB
  • sloc: cpp: 3,310; ansic: 117; xml: 57; ruby: 34; makefile: 2
file content (175 lines) | stat: -rw-r--r-- 5,711 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// -*- mode: C++; c-indent-level: 4; c-basic-offset: 4;  tab-width: 8; -*-
//
// Example of a planetary motion solver with interactive console
//
// Copyright (C) 2009         Dirk Eddelbuettel 
// Copyright (C) 2010 - 2017  Dirk Eddelbuettel and Romain Francois
// Copyright (C) 2017         Dirk Eddelbuettel, Romain Francois and Łukasz Łaniewski-Wołłk
//
// GPL'ed 

#include <RInside.h>                    // for the embedded R via RInside

class Wrapper;

// A planet.
struct Planet {
    double x,y;
    double m;
    double vx, vy;
};

// A gravity simulator
class Solver {
    typedef std::vector<Planet> Planets;
    Planets tab;
    double dt;
    double G;
    void Iteration() {
        for (Planets::iterator a=tab.begin(); a != tab.end(); a++) {
            for (Planets::iterator b=tab.begin(); b != a; b++) {
                double x = a->x - b->x;
                double y = a->y - b->y;
                double r = sqrt(x*x + y*y);
                double f = a->m * b->m * G / (r*r+1);
                double fx = f * x/r;
                double fy = f * y/r;
                a->vx -= dt * fx / a->m;
                a->vy -= dt * fy / a->m;
                b->vx += dt * fx / b->m;
                b->vy += dt * fy / b->m;
            }
        }
        for (Planets::iterator a=tab.begin(); a != tab.end(); a++) {
            a->x += dt * a->vx;
            a->y += dt * a->vy;
        }
    }
public:
    Solver(int n): tab(n), dt(1.0e-4), G(1.0) {
        double v=0;
        for (Planets::iterator a=tab.begin(); a != tab.end(); a++) {
            a->x = sin(v);
            a->y = cos(v);
            a->m = 1;
            v += 3.0/n;
        }
    }
    void Iterate(int n) {
        for (int i=0;i<n;i++) Iteration();
    }
    friend class Wrapper;
};

// A nice wrapper for the solver
class Wrapper {
    Solver * s;
public:
    Wrapper(Solver * s_) : s(s_) {}
    Rcpp::DataFrame getData() {
        Rcpp::NumericVector x,y,m,vx,vy;
        for (Solver::Planets::iterator a=s->tab.begin(); a != s->tab.end(); a++) {
            x.push_back( a->x);            
            y.push_back( a->y);            
            m.push_back( a->m);            
            vx.push_back(a->vx);            
            vy.push_back(a->vy);            
        }
        return Rcpp::DataFrame::create(Rcpp::Named("x") = x,
                                       Rcpp::Named("y") = y,
                                       Rcpp::Named("mass") = m,
                                       Rcpp::Named("Vx") = vx,
                                       Rcpp::Named("Vy") = vy);
    }
    void setData(Rcpp::DataFrame tab) {
        if ((size_t)tab.nrows() != s->tab.size()) {
            return;
        }
        Rcpp::NumericVector x = tab["x"];
        Rcpp::NumericVector y = tab["y"];
        Rcpp::NumericVector m = tab["mass"];
        Rcpp::NumericVector vx = tab["Vy"];
        Rcpp::NumericVector vy = tab["Vy"];
        for (int i=0;i<tab.nrows();i++) {
            s->tab[i].x  = x[i];
            s->tab[i].y  = y[i];
            s->tab[i].m  = m[i];
            s->tab[i].vx = vx[i];
            s->tab[i].vy = vy[i];
        }
    }
    double& G() {
        return s->G;
    }
    double& dt() {
        return s->dt;
    }
};

// The function which is called when running Solver$... 
SEXP Dollar(Rcpp::XPtr<Wrapper> obj, std::string name) {
    if (name == "data") {
        return obj->getData();
    } else if (name == "G") {
        return Rcpp::NumericVector(1,obj->G());
    } else if (name == "dt") {
        return Rcpp::NumericVector(1,obj->dt());
    } else {
        return NULL;
    }
}

// The function which is called when assigning to Solver$... 
Rcpp::XPtr<Wrapper> DollarAssign(Rcpp::XPtr<Wrapper> obj, std::string name, SEXP v) {
    if (name == "data") {
        obj->setData(v);
    } else if (name == "G") {
        obj->G() = Rcpp::NumericVector(v)[0];
    } else if (name == "dt") {
        obj->dt() = Rcpp::NumericVector(v)[0];
    }
    return obj;
}

// The function listing the elements of Solver
Rcpp::CharacterVector Names(Rcpp::XPtr<Wrapper> obj) {
    Rcpp::CharacterVector ret;
    ret.push_back("data");
    ret.push_back("G");
    ret.push_back("dt");
    return ret;
}

int main(int argc, char *argv[]) {
    Solver S(70); // Creating the gravity simulator
    
    RInside R(argc, argv, false, false, true); // Create an embedded R instance 
    Rcpp::XPtr<Wrapper> wr(new Wrapper(&S));   // Wrapping the solver
    wr.attr("class") = "Solver";
    R["Solver"] = wr; // Adding the wrapped solver
    R["$.Solver"] = Rcpp::InternalFunction(& Dollar); // Adding the functions
    R["$<-.Solver"] = Rcpp::InternalFunction(& DollarAssign);
    R["names.Solver"] = Rcpp::InternalFunction(& Names);
    char type;
    do {
        std::cout << "Want to go interactive? [y/n]";
        std::cin  >> type;
    } while ( !std::cin.fail() && type!='y' && type!='n' );
    if (type == 'y') { // Running an interactive R session
        std::cout << "Running an interactive R session. You can explore (and modify) the data in the 'Solver' object." << std::endl;
        std::cout << "[ You can finish the with Ctrl+D ]" << std::endl;
        R.parseEval("options(prompt = 'R console > ')");
        R.parseEval("X11()");
        R.repl() ;
        std::cout << "Finishing the interactive mode" << std::endl;
        R.parseEval("dev.off()");
    }
    R.parseEval("X11()");
    for (int i=0;i<2000;i++) { // Running the some 200'000 iterations in non-interactive mode
        S.Iterate(100);
        R.parseEval("P = Solver$data;");
        R.parseEval("plot(P$x,P$y,cex=P$mass,asp=1,xlim=c(-5,5),ylim=c(-5,5),xlab='X',ylab='Y')");
    }
    exit(0);
}