File: plots.wblrob.t

package info (click to toggle)
r-cran-robust 0.7-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,548 kB
  • sloc: fortran: 11,898; ansic: 741; sh: 13; makefile: 2
file content (268 lines) | stat: -rw-r--r-- 4,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
## -*- R -*-
##	loop tests for covRob plots
##

	#Global
{
	the.data <- los
	TRUE
}

###########################################################

	#1 test plot.gammaRob

{
	#make a gammaRob object and start pdf device
	temp <- gammaRob(data = the.data)
	pdf("plot.gamma.pdf")
	TRUE
}

{
	#plot.gammaRob
	class(try(plot(temp))) != "Error"
}

{
	#make a gammaMLE object
	temp <- gammaMLE(data = the.data)
	TRUE
}

{
	#plot.gammaMLE
	class(try(plot(temp))) != "Error"
}

{
	require("fit.models")
}

{
	#make a gamma fit.models object
	temp <- fit.models(list(Robust = "gammaRob", MLE = "gammaMLE"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#make a gamma fit.models object with only robust model
	temp <- fit.models(list(Robust = "gammaRob"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#make a gamma fit.models object with only MLE model
	temp <- fit.models(list(MLE = "gammaMLE"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#clean up and write to file
	rm(temp)
	dev.off()
	TRUE
}

#################################################################

	#1 test plot.weibullRob

{
	#make a weibullRob object and start pdf device
	temp <- weibullRob(data = the.data)
	pdf("plot.weibull.pdf")
	TRUE
}

{
	#plot.weibullRob
	class(try(plot(temp))) != "Error"
}

{
	#make a weibullMLE object
	temp <- weibullMLE(data = the.data)
	TRUE
}

{
	#plot.weibullMLE
	class(try(plot(temp))) != "Error"
}

{
	#make a weibull fit.models object
	temp <- fit.models(list(Robust = "weibullRob", MLE = "weibullMLE"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#make a weibull fit.models object with only robust model
	temp <- fit.models(list(Robust = "weibullRob"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#make a weibull fit.models object with only MLE model
	temp <- fit.models(list(MLE = "weibullMLE"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#clean up and write to file
	rm(temp)
	dev.off()
	TRUE
}

#################################################################

	#1 test plot.lognormRob

{
	#make a lognormRob object and start pdf device
	temp <- lognormRob(data = the.data)
	pdf("plot.lognorm.pdf")
	TRUE
}

{
	#plot.lognormRob
	class(try(plot(temp))) != "Error"
}

{
	#make a lognormMLE object
	temp <- lognormMLE(data = the.data)
	TRUE
}

{
	#plot.lognormMLE
	class(try(plot(temp))) != "Error"
}

{
	#make a lognorm fit.models object
	temp <- fit.models(list(Robust = "lognormRob", MLE = "lognormMLE"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#make a lognorm fit.models object with only robust model
	temp <- fit.models(list(Robust = "lognormRob"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#make a lognorm fit.models object with only MLE model
	temp <- fit.models(list(MLE = "lognormMLE"), data = the.data)
	TRUE
}

{
	#Overlaid Density Estimates
	class(try(plot(temp, which = 1))) != "Error"
}

{
	#Response vs Estimated Quantiles
	class(try(plot(temp, which = 2))) != "Error"
}

{
	#clean up and write to file
	rm(temp)
	dev.off()
	TRUE
}

#################################################################


	#Clean Global
{
	rm(the.data)
	TRUE
}