File: anova.lmRob.Rd

package info (click to toggle)
r-cran-robust 0.7-5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,548 kB
  • sloc: fortran: 11,898; ansic: 741; sh: 13; makefile: 2
file content (60 lines) | stat: -rw-r--r-- 1,778 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
\name{anova.lmRob}
\alias{anova.lmRob}
\alias{anova.lmRoblist}

\title{ANOVA for Robust Linear Model Fits}

\description{
Compute an analysis of variance table for one or more robust linear model fits.
}

\usage{
\method{anova}{lmRob}(object, ..., test = c("RF", "RWald"))
\method{anova}{lmRoblist}(object, const, ipsi, yc, test = c("RWald", "RF"), ...) 
}

\arguments{
\item{object}{an lmRob object.}

\item{\dots}{additional arguments required by the generic anova function.  If \code{\dots} contains additional robustly fitted linear models then the function \code{\link{anova.lmRoblist}} is dispatched.}

\item{const}{a numeric value containing the tuning constant.}

\item{ipsi}{an integer value specifying the psi-function.}

\item{yc}{a numeric value containing the tuning constant.}

\item{test}{a single character value specifying which test should be computed in the Anova table.  The possible choices are "RWald" and "RF".}
}

\details{
The default test used by anova is the \code{"RWald"} test, which is the Wald test based on robust estimates of the coefficients and covariance matrix.  If \code{test} is \code{"RF"}, the robustified F-test is used instead.  
}

\value{
an \code{anova} object.
}

\section{References}{
Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986).  \emph{Robust statistics: the approach based on influence functions}.  John Wiley & Sons.  
}

\seealso{
\code{\link{lmRob}}, 
\code{\link{anova}}.
}

\examples{
data(stack.dat)
stack.small <- lmRob(Loss ~ Water.Temp + Acid.Conc., data = stack.dat)
stack.full <- lmRob(Loss ~ ., data = stack.dat)
anova(stack.full)
anova(stack.full, stack.small)
}

\keyword{robust}
\keyword{regression}
\keyword{methods}