1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
##' rpf - Response Probability Functions
##'
##' Factor out logic and math common
##' to Item Factor Analysis fitting, diagnostics, and analysis. It is
##' envisioned as core support code suitable for more specialized IFA
##' packages to build upon.
##'
##' This package provides optimized, low-level functions to map
##' parameters to response probabilities for dichotomous (1PL, 2PL and
##' 3PL) \code{\link{rpf.drm}} and polytomous (graded response
##' \code{\link{rpf.grm}}, partial credit/generalized partial credit
##' (via the nominal model), and nominal \code{\link{rpf.nrm}} items.
##'
##' Item model parameters are passed around as a numeric vector. A 1D
##' matrix is also acceptable. Regardless of model, parameters are
##' always ordered as follows: discrimination/slope ("a"),
##' difficulty/intercept ("b"), and pseudo guessing/upper-bound ("g"/"u"). If
##' person ability ranges from negative to positive then
##' probabilities are output from incorrect to correct. That is, a low
##' ability person (e.g., ability = -2) will be more likely to get an
##' item incorrect than correct. For example, a dichotomous model that
##' returns [.25, .75] indicates a probability of .25 for incorrect
##' and .75 for correct. A polytomous model will have the most
##' incorrect probability at index 1 and the most correct probability
##' at the maximum index.
##'
##' All models are always in the logistic metric. To obtain normal
##' ogive discrimination parameters, divide slope parameters by
##' \code{\link{rpf.ogive}}. Item models are estimated in
##' slope-intercept form. Input/output matrices arranged in the way
##' most convenient for low-level processing in C. The maximum
##' absolute logit is 35 because f(x) := 1-exp(x) loses accuracy around f(-35)
##' and equals 1 at f(-38) due to the limited accuracy of double
##' precision floating point.
##'
##' This package could also accrete functions to support plotting (but
##' not the actual plot functions).
##'
##' @docType package
##' @rdname rpf.introduction
##' @name An introduction
##' @references
##' Pritikin, J. N., Hunter, M. D., & Boker, S. M.
##' (2015). Modular open-source software for Item Factor Analysis.
##' Educational and Psychological Measurement, 75(3), 458-474
##'
##' Thissen, D. and Steinberg, L. (1986). A taxonomy of
##' item response models. \emph{Psychometrika 51}(4), 567-577.
##' @seealso
##' See \code{\link{rpf.rparam}} to create item parameters.
NULL
##' The base class for response probability functions.
##'
##' Item specifications should not be modified after creation.
##'
##' @name Class rpf.base
##' @rdname rpf.base-class
##' @aliases rpf.base-class
##' $,rpf.base-method
##' $<-,rpf.base-method
setClass("rpf.base",
representation(spec="numeric",
outcomes="numeric",
factors="numeric",
"VIRTUAL"))
imxExtractSlot <- function(x, name) {
if (!.hasSlot(x, name)) {
return(NULL)
} else {
return(slot(x, name))
}
}
setMethod("$", "rpf.base", imxExtractSlot)
setReplaceMethod("$", "rpf.base", function(x, name, value) {
stop("Slots are read-only")
})
##' The base class for 1 dimensional response probability functions.
##' @name Class rpf.1dim
##' @rdname rpf.1dim-class
##' @aliases rpf.1dim-class
setClass("rpf.1dim", contains='rpf.base',
representation("VIRTUAL"))
##' The base class for multi-dimensional response probability functions.
##' @name Class rpf.mdim
##' @rdname rpf.mdim-class
##' @aliases rpf.mdim-class
setClass("rpf.mdim", contains='rpf.base',
representation("VIRTUAL"))
##' Length of the item model vector
##' @param m item model
##' @aliases
##' rpf.numSpec,rpf.base-method
##' rpf_numSpec_wrapper
##' @examples
##' rpf.numSpec(rpf.grm(outcomes=3))
##' rpf.numSpec(rpf.nrm(outcomes=3))
setGeneric("rpf.numSpec", function(m) standardGeneric("rpf.numSpec"))
setMethod("rpf.numSpec", signature(m="rpf.base"),
function(m) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call(`_rpf_numSpec`, m@spec)
}
})
##' Length of the item parameter vector
##'
##' @param m item model
##' @aliases
##' rpf.numParam,rpf.base-method
##' rpf_numParam_wrapper
##' @examples
##' rpf.numParam(rpf.grm(outcomes=3))
##' rpf.numParam(rpf.nrm(outcomes=3))
setGeneric("rpf.numParam", function(m) standardGeneric("rpf.numParam"))
setMethod("rpf.numParam", signature(m="rpf.base"),
function(m) {
.Call('_rpf_numParam', m@spec)
})
##' Create a similar item specification with the given number of factors
##'
##' @param m item model
##' @param factors the number of factors/dimensions
##' @aliases
##' rpf.modify,rpf.mdim.drm,numeric-method
##' rpf.modify,rpf.mdim.graded,numeric-method
##' rpf.modify,rpf.mdim.nrm,numeric-method
##' @examples
##' s1 <- rpf.grm(factors=3)
##' rpf.rparam(s1)
##' s2 <- rpf.modify(s1, 1)
##' rpf.rparam(s2)
setGeneric("rpf.modify", function(m, factors) standardGeneric("rpf.modify"))
##' Retrieve a description of the given parameter
##' @param m item model
##' @param num vector of parameters (defaults to all)
##' @return a list containing the type, upper bound, and lower bound
##' @aliases
##' rpf.paramInfo,rpf.base-method
##' rpf_paramInfo_wrapper
##' @examples
##' rpf.paramInfo(rpf.drm())
setGeneric("rpf.paramInfo", function(m, num=NULL) standardGeneric("rpf.paramInfo"))
setMethod("rpf.paramInfo", signature(m="rpf.base"),
function(m, num=NULL) {
if (missing(num)) {
num <- 1:rpf.numParam(m)
}
if (length(num) == 0) {
stop("Which parameter?")
} else if (length(num) == 1) {
.Call('_rpf_paramInfo', m@spec, num-1)
} else {
sapply(num, function (px) .Call('_rpf_paramInfo', m@spec, px-1))
}
})
##' Item parameter derivatives
##'
##' Evaluate the partial derivatives of the log likelihood with
##' respect to each parameter at \code{where} with \code{weight}.
##'
##' It is not easy to write an example for this function. To evaluate
##' the derivative, you need to sum the derivatives across a
##' quadrature. You also need response outcome weights at each
##' quadrature point. It is not anticipated that this function will be
##' often used in R code. It's mainly to expose a C-level function for
##' occasional debugging.
##'
##' @param m item model
##' @param param item parameters
##' @param where location in the latent space
##' @param weight per outcome weights (typically derived by observation)
##' @return first and second order partial derivatives of the log
##' likelihood evaluated at \code{where}. For p parameters, the first
##' p values are the first derivative and the next p(p+1)/2 columns
##' are the lower triangle of the second derivative.
##' @seealso
##' The numDeriv package.
##' @aliases
##' rpf.dLL,rpf.base,numeric,numeric,numeric-method
##' rpf.dLL,rpf.base,numeric,NULL,numeric-method
##' _rpf_dLL
setGeneric("rpf.dLL", function(m, param, where, weight) standardGeneric("rpf.dLL"))
setMethod("rpf.dLL", signature(m="rpf.base", param="numeric",
where="numeric", weight="numeric"),
function(m, param, where, weight) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_dLL', m@spec, param, where, weight)
}
})
setMethod("rpf.dLL", signature(m="rpf.base", param="numeric",
where="NULL", weight="numeric"),
function(m, param, where, weight) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_dLL', m@spec, param, where, weight)
}
})
##' Item derivatives with respect to the location in the latent space
##'
##' Evaluate the partial derivatives of the response probability with
##' respect to ability. See \link{rpf.info} for an application.
##'
##' @param m item model
##' @param param item parameters
##' @param where location in the latent distribution
##' @param dir if more than 1 factor, a basis vector
##' @aliases
##' _rpf_dTheta
##' rpf.dTheta,rpf.base,numeric,numeric,numeric-method
##' rpf.dTheta,rpf.base,numeric,matrix,numeric-method
setGeneric("rpf.dTheta", function(m, param, where, dir) standardGeneric("rpf.dTheta"))
setMethod("rpf.dTheta", signature(m="rpf.base", param="numeric",
where="numeric", dir="numeric"),
function(m, param, where, dir) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_dTheta', m@spec, param, where, dir)
}
})
setMethod("rpf.dTheta", signature(m="rpf.base", param="numeric",
where="matrix", dir="numeric"),
function(m, param, where, dir) {
dP.raw <- apply(where, 2, function(w) rpf.dTheta(m, param, w, dir))
list(gradient=sapply(dP.raw, function(deriv) deriv$gradient),
hessian=sapply(dP.raw, function(deriv) deriv$hessian))
})
##' Rescale item parameters
##'
##' Adjust item parameters for changes in mean and covariance of the
##' latent distribution.
##'
##' @param m item model
##' @param param item parameters
##' @param mean vector of means
##' @param cov covariance matrix
##' @aliases
##' _rpf_rescale
##' rpf.rescale,rpf.base,numeric,numeric,matrix-method
##' @examples
##' spec <- rpf.grm()
##' p1 <- rpf.rparam(spec)
##' testPoint <- rnorm(1)
##' move <- rnorm(1)
##' cov <- as.matrix(rlnorm(1))
##' Icov <- solve(cov)
##' padj <- rpf.rescale(spec, p1, move, cov)
##' pr1 <- rpf.prob(spec, padj, (testPoint-move) %*% Icov)
##' pr2 <- rpf.prob(spec, p1, testPoint)
##' abs(pr1 - pr2) < 1e9
setGeneric("rpf.rescale", function(m, param, mean, cov) standardGeneric("rpf.rescale"))
setMethod("rpf.rescale", signature(m="rpf.base", param="numeric",
mean="numeric", cov="matrix"),
function(m, param, mean, cov) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_rescale', m@spec, param, mean, cov)
}
})
##' Map an item model, item parameters, and person trait score into a
##' probability vector
##'
##' This function is known by many names in the literature. When
##' plotted against latent trait, it is often called a traceline, item
##' characteristic curve, or item response function. Sometimes the word
##' 'category' or 'outcome' is used in place of 'item'. For example,
##' 'item response function' might become 'category response
##' function'. All these terms refer to the same thing.
##'
##' @param m an item model
##' @param param item parameters
##' @param theta the trait score(s)
##' @return a vector of probabilities. For dichotomous items,
##' probabilities are returned in the order incorrect, correct.
##' Although redundent, both incorrect and correct probabilities are
##' returned in the dichotomous case for API consistency with
##' polytomous item models.
##' @docType methods
##' @aliases
##' rpf.prob,rpf.1dim,numeric,numeric-method
##' rpf.prob,rpf.mdim,numeric,NULL-method
##' rpf.prob,rpf.mdim,numeric,numeric-method
##' rpf.prob,rpf.mdim,numeric,matrix-method
##' rpf.prob,rpf.base,data.frame,numeric-method
##' rpf.prob,rpf.base,matrix,numeric-method
##' rpf.prob,rpf.base,matrix,matrix-method
##' rpf.prob,rpf.1dim,numeric,matrix-method
##' rpf.prob,rpf.1dim.grm,numeric,numeric-method
##' rpf.prob,rpf.mdim.grm,numeric,numeric-method
##' rpf.prob,rpf.mdim.nrm,numeric,matrix-method
##' rpf.prob,rpf.mdim.mcm,numeric,matrix-method
##' rpf.prob,rpf.mdim.grm,numeric,matrix-method
##' _rpf_prob
##' @examples
##' i1 <- rpf.drm()
##' i1.p <- rpf.rparam(i1)
##' rpf.prob(i1, c(i1.p), -1) # low trait score
##' rpf.prob(i1, c(i1.p), c(0,1)) # average and high trait score
setGeneric("rpf.prob", function(m, param, theta) standardGeneric("rpf.prob"))
##' Map an item model, item parameters, and person trait score into a
##' probability vector
##'
##' Note that in general, exp(rpf.logprob(..)) != rpf.prob(..) because
##' the range of logits is much wider than the range of probabilities
##' due to limitations of floating point numerical precision.
##'
##' @param m an item model
##' @param param item parameters
##' @param theta the trait score(s)
##' @return a vector of probabilities. For dichotomous items,
##' probabilities are returned in the order incorrect, correct.
##' Although redundent, both incorrect and correct probabilities are
##' returned in the dichotomous case for API consistency with
##' polytomous item models.
##' @docType methods
##' @aliases
##' rpf.logprob,rpf.1dim,numeric,numeric-method
##' rpf.logprob,rpf.1dim,numeric,matrix-method
##' rpf.logprob,rpf.mdim,numeric,matrix-method
##' rpf.logprob,rpf.mdim,numeric,numeric-method
##' rpf.logprob,rpf.mdim,numeric,NULL-method
##' _rpf_logprob
##' @examples
##' i1 <- rpf.drm()
##' i1.p <- rpf.rparam(i1)
##' rpf.logprob(i1, c(i1.p), -1) # low trait score
##' rpf.logprob(i1, c(i1.p), c(0,1)) # average and high trait score
setGeneric("rpf.logprob", function(m, param, theta) standardGeneric("rpf.logprob"))
setMethod("rpf.logprob", signature(m="rpf.1dim", param="numeric", theta="numeric"),
function(m, param, theta) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_logprob', m@spec, param, theta)
}
})
setMethod("rpf.logprob", signature(m="rpf.mdim", param="numeric", theta="matrix"),
function(m, param, theta) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_logprob', m@spec, param, theta)
}
})
setMethod("rpf.logprob", signature(m="rpf.mdim", param="numeric", theta="numeric"),
function(m, param, theta) {
rpf.logprob(m, param, as.matrix(theta))
})
setMethod("rpf.logprob", signature(m="rpf.mdim", param="numeric", theta="NULL"),
function(m, param, theta) {
if (length(m@spec)==0) {
stop("Not implemented")
} else {
.Call('_rpf_logprob', m@spec, param, theta)
}
})
setMethod("rpf.logprob", signature(m="rpf.1dim", param="numeric", theta="matrix"),
function(m, param, theta) {
rpf.logprob(m, param, as.numeric(theta))
})
setMethod("rpf.prob", signature(m="rpf.1dim", param="numeric", theta="numeric"),
function(m, param, theta) {
if (length(m@spec)==0) {
exp(rpf.logprob(m, param, theta))
} else {
.Call('_rpf_prob', m@spec, param, theta)
}
})
setMethod("rpf.prob", signature(m="rpf.mdim", param="numeric", theta="NULL"),
function(m, param, theta) {
if (length(m@spec)==0) {
exp(rpf.logprob(m, param, theta))
} else {
.Call('_rpf_prob', m@spec, param, theta)
}
})
setMethod("rpf.prob", signature(m="rpf.mdim", param="numeric", theta="matrix"),
function(m, param, theta) {
if (length(m@spec)==0) {
exp(rpf.logprob(m, param, theta))
} else {
.Call('_rpf_prob', m@spec, param, theta)
}
})
setMethod("rpf.prob", signature(m="rpf.base", param="data.frame", theta="numeric"),
function(m, param, theta) {
exp(rpf.logprob(m, as.numeric(param), theta))
})
setMethod("rpf.prob", signature(m="rpf.base", param="matrix", theta="numeric"),
function(m, param, theta) {
rpf.prob(m, as.numeric(param), theta)
})
setMethod("rpf.prob", signature(m="rpf.base", param="matrix", theta="matrix"),
function(m, param, theta) {
rpf.prob(m, as.numeric(param), theta)
})
setMethod("rpf.prob", signature(m="rpf.1dim", param="numeric", theta="matrix"),
function(m, param, theta) {
rpf.prob(m, param, as.numeric(theta))
})
setMethod("rpf.prob", signature(m="rpf.mdim", param="numeric", theta="numeric"),
function(m, param, theta) {
rpf.prob(m, param, as.matrix(theta))
})
##' Map an item model, item parameters, and person trait score into a
##' information vector
##'
##' @param ii an item model
##' @param ii.p item parameters
##' @param where the location in the latent distribution
##' @param basis if more than 1 factor, a positive basis vector
##' @return Fisher information
##' @examples
##' i1 <- rpf.drm()
##' i1.p <- c(.6,1,.1,.95)
##' theta <- seq(0,3,.05)
##' plot(theta, rpf.info(i1, i1.p, t(theta)), type="l")
##' @references Dodd, B. G., De Ayala, R. J. & Koch,
##' W. R. (1995). Computerized adaptive testing with polytomous items.
##' \emph{Applied psychological measurement 19}(1), 5-22.
rpf.info <- function(ii, ii.p, where, basis=1) {
if (any(basis < 0)) warning("All components of the basis vector should be positive")
if (!missing(basis)) {
basis <- basis/sqrt(sum(basis^2))
}
P <- rpf.prob(ii, ii.p, where)
dP <- rpf.dTheta(ii, ii.p, where, basis)
colSums(dP$gradient^2 / P - dP$hessian)
}
##' Generates item parameters
##'
##' This function generates random item parameters. The version
##' argument is available if you are writing a test that depends on
##' reproducable random parameters (using \code{set.seed}).
##'
##' @param m an item model
##' @param version the version of random parameters
##' @return item parameters
##' @docType methods
##' @aliases
##' rpf.rparam,rpf.1dim.drm-method
##' rpf.rparam,rpf.mdim.drm-method
##' rpf.rparam,rpf.1dim.graded-method
##' rpf.rparam,rpf.mdim.graded-method
##' rpf.rparam,rpf.mdim.nrm-method
##' rpf.rparam,rpf.mdim.mcm-method
##' rpf.rparam,rpf.1dim.lmp-method
##' rpf.rparam,rpf.1dim.grmp-method
##' rpf.rparam,rpf.1dim.gpcmp-method
##' @examples
##' i1 <- rpf.drm()
##' rpf.rparam(i1)
setGeneric("rpf.rparam", function(m, version=2L) standardGeneric("rpf.rparam"))
##' The ogive constant
##'
##' The ogive constant can be multiplied by the discrimination
##' parameter to obtain a response curve very similar to the Normal
##' cumulative distribution function (Haley, 1952; Molenaar, 1974).
##' Recently, Savalei (2006) proposed a new constant of 1.749 based on
##' Kullback-Leibler information.
##'
##' In recent years, the logistic has grown in favor, and therefore,
##' this package does not offer any special support for this
##' transformation (Baker & Kim, 2004, pp. 14-18).
##'
##' @references Camilli, G. (1994). Teacher's corner: Origin of the
##' scaling constant d=1.7 in Item Response Theory. \emph{Journal of
##' Educational and Behavioral Statistics, 19}(3), 293-295.
##'
##' Baker & Kim (2004). \emph{Item Response Theory: Parameter
##' Estimation Techniques.} Marcel Dekker, Inc.
##'
##' Haley, D. C. (1952). \emph{Estimation of the dosage mortality
##' relationship when the dose is subject to error} (Technical Report
##' No. 15). Stanford University Applied Mathematics and Statistics
##' Laboratory, Stanford, CA.
##'
##' Molenaar, W. (1974). De logistische en de normale kromme [The
##' logistic and the normal curve]. \emph{Nederlands Tijdschrift voor de
##' Psychologie} 29, 415-420.
##'
##' Savalei, V. (2006). Logistic approximation to the normal: The KL
##' rationale. \emph{Psychometrika, 71}(4), 763--767.
rpf.ogive <- 1.702
##' The base class for 1 dimensional graded response probability functions.
##'
##' This class contains methods common to both the generalized partial
##' credit model and the graded response model.
##'
##' @name Class rpf.1dim.graded
##' @rdname rpf.1dim.graded-class
##' @aliases rpf.1dim.graded-class
setClass("rpf.1dim.graded", contains='rpf.1dim',
representation("VIRTUAL"))
##' The base class for multi-dimensional graded response probability
##' functions.
##'
##' This class contains methods common to both the generalized partial
##' credit model and the graded response model.
##'
##' @name Class rpf.mdim.graded
##' @rdname rpf.mdim.graded-class
##' @aliases rpf.mdim.graded-class
setClass("rpf.mdim.graded", contains='rpf.mdim',
representation("VIRTUAL"))
##' The unidimensional graded response item model.
##'
##' @name Class rpf.1dim.grm
##' @rdname rpf.1dim.grm-class
##' @aliases rpf.1dim.grm-class
setClass("rpf.1dim.grm", contains='rpf.1dim.graded')
##' Unidimensional dichotomous item models (1PL, 2PL, and 3PL).
##'
##' @name Class rpf.1dim.drm
##' @rdname rpf.1dim.drm-class
##' @aliases rpf.1dim.drm-class
setClass("rpf.1dim.drm", contains='rpf.1dim')
##' Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).
##'
##' @name Class rpf.mdim.drm
##' @rdname rpf.mdim.drm-class
##' @aliases rpf.mdim.drm-class
setClass("rpf.mdim.drm", contains='rpf.mdim')
##' The multidimensional graded response item model.
##'
##' @name Class rpf.mdim.grm
##' @rdname rpf.mdim.grm-class
##' @aliases rpf.mdim.grm-class
setClass("rpf.mdim.grm", contains='rpf.mdim.graded')
##' The nominal response item model (both unidimensional and
##' multidimensional models have the same parameterization).
##'
##' @name Class rpf.mdim.nrm
##' @rdname rpf.mdim.nrm-class
##' @aliases rpf.mdim.nrm-class
setClass("rpf.mdim.nrm", contains='rpf.mdim')
##' The multiple-choice response item model (both unidimensional and
##' multidimensional models have the same parameterization).
##'
##' @name Class rpf.mdim.mcm
##' @rdname rpf.mdim.mcm-class
##' @aliases rpf.mdim.mcm-class
setClass("rpf.mdim.mcm", contains='rpf.mdim')
##' Unidimensional logistic function of a monotonic polynomial.
##'
##' @name Class rpf.1dim.lmp
##' @rdname rpf.1dim.lmp-class
##' @aliases rpf.1dim.lmp-class
##'
setClass("rpf.1dim.lmp", contains='rpf.1dim')
##' Unidimensional graded response monotonic polynomial.
##'
##' @name Class rpf.1dim.grmp
##' @rdname rpf.1dim.grmp-class
##' @aliases rpf.1dim.grmp-class
##'
setClass("rpf.1dim.grmp", contains='rpf.1dim')
##' Unidimensional generalized partial credit monotonic polynomial.
##'
##' @name Class rpf.1dim.gpcmp
##' @rdname rpf.1dim.gpcmp-class
##' @aliases rpf.1dim.gpcmp-class
##'
setClass("rpf.1dim.gpcmp", contains='rpf.1dim')
##' Convert an rpf item model name to an ID
##'
##' This is an internal function and should not be used.
##'
##' @param name name of the item model (string)
##' @return the integer ID assigned to the given model
rpf.id_of <- function(name) {
.Call(`_rpf_get_model_id`, name)
}
|