1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
##' Identify the columns with most missing data
##'
##' If a reference column is given then only rows that are not missing
##' on the reference column are considered. Otherwise all rows are
##' considered.
##'
##' @template detail-group
##' @template arg-grp
##' @param omit the maximum number of items to omit
##' @param ref the reference column (optional)
##' @family scoring
bestToOmit <- function(grp, omit, ref=NULL) {
if (missing(omit)) stop("How many items to omit?")
if (omit == 0) return(NULL)
dat <- grp$data
wcol <- 1
if (!is.null(grp$weightColumn)) {
wcol <- dat[[grp$weightColumn]]
dat <- dat[,-match(grp$weightColumn, colnames(dat))]
}
if (omit >= ncol(dat)) stop("Cannot omit all columns")
if (!is.null(ref)) {
mask <- !is.na(dat[[ref]])
dat <- dat[mask,]
if (length(wcol) > 1) wcol <- wcol[mask]
}
nacount <- apply(dat, 2, function(c) sum(is.na(c) * wcol))
omit <- min(omit, sum(nacount > 0))
if (omit == 0) return(NULL)
names(sort(-nacount)[1:omit])
}
##' Omit the given items
##'
##' @template detail-group
##' @template arg-grp
##' @param excol vector of column names to omit
##' @family scoring
omitItems <- function(grp, excol) {
if (missing(excol)) stop("Which items to omit?")
if (length(excol) == 0) return(grp)
imask <- -match(excol, colnames(grp$param))
grp$spec <- grp$spec[imask]
grp$param <- grp$param[,imask]
grp$free <- grp$free[,imask]
grp$labels <- grp$labels[,imask]
grp$uniqueFree <- length(unique(grp$labels[grp$free], incomparables=NA))
grp$data <- grp$data[,-match(excol, colnames(grp$data))]
# We need to repack the data because
# rows that only differed on the column
# we removed are now the same.
if (!is.null(grp$weightColumn)) {
data <- expandDataFrame(grp$data, grp$weightColumn)
grp$data <- compressDataFrame(data, .asNumeric=TRUE)
}
if (!is.null(grp$observedStats)) {
grp$observedStats <- nrow(grp$data)
}
grp$omitted <- c(grp$omitted, excol)
grp
}
##' Omit items with the most missing data
##'
##' Items with no missing data are never omitted, regardless of the
##' number of items requested.
##'
##' @template detail-group
##' @template arg-grp
##' @param omit the maximum number of items to omit
##' @family scoring
omitMostMissing <- function(grp, omit) {
omitItems(grp, bestToOmit(grp, omit))
}
ssEAP <- function(grp, mask, twotier=FALSE) {
if (missing(mask)) {
mask <- rep(TRUE, ncol(grp$param))
}
.Call('_rpf_ssEAP_wrapper', grp, mask, twotier)
}
#' Collapse small sample size categorical frequency counts
#'
#' @param observed the observed frequency table
#' @param expected the expected frequency table
#' @param minExpected the minimum expected cell frequency
#'
#' Pearson's X^2 test requires some minimum frequency per cell to
#' avoid an inflated false positive rate. This function will merge
#' cells with the lowest frequency counts until all the counts are
#' above the minimum threshold. Cells that have been merged are filled
#' with NAs. The resulting tables and number of merged cells is
#' returned.
#'
#' @examples
#' O = matrix(c(7,31,42,20,0), 1,5)
#' E = matrix(c(3,39,50,8,0), 1,5)
#' collapseCategoricalCells(O,E,9)
collapseCategoricalCells <- function(observed, expected, minExpected=1) {
.Call('_rpf_collapse', observed, expected, minExpected)
}
sumScoreEAPTestInternal <- function(result) {
class(result) <- "summary.sumScoreEAPTest"
if (result[['n']] == 0) return(result)
expected <- matrix(result$expected, ncol=1)
obs <- matrix(result$observed, ncol=1)
result$rms.p <- log(ptw2011.gof.test(obs, expected))
kc <- .Call('_rpf_collapse', obs, expected, 1.0)
obs <- kc$O
expected <- kc$E
mask <- !is.na(expected) & expected!=0
result$pearson.chisq <- sum((obs[mask] - expected[mask])^2 / expected[mask])
result$pearson.df <- sum(mask)-1L
result$pearson.p <- pchisq(result$pearson.chisq, result$pearson.df, lower.tail=FALSE, log.p=TRUE)
result
}
##' Conduct the sum-score EAP distribution test
##'
##' @template detail-group
##' @template arg-grp
##' @template arg-dots
##' @param qwidth DEPRECATED
##' @param qpoints DEPRECATED
##' @param .twotier whether to enable the two-tier optimization
##' @family diagnostic
##' @references
##' Li, Z., & Cai, L. (2018). Summed Score Likelihood-Based Indices for
##' Testing Latent Variable Distribution Fit in
##' Item Response Theory. \emph{Educational and
##' Psychological Measurement, 78}(5), 857-886.
sumScoreEAPTest <- function(grp, ..., qwidth=6.0, qpoints=49L, .twotier=TRUE) {
if (length(list(...)) > 0) {
stop(paste("Remaining parameters must be passed by name", deparse(list(...))))
}
if (is.null(grp$data)) {
stop("distributionTest cannot be conducted because there is no data")
}
if (!missing(qwidth) || !missing(qpoints)) complainAboutQuadSpec()
tbl <- ssEAP(grp, twotier=.twotier)
rownames(tbl) <- 0:(nrow(tbl)-1)
result <- list(tbl=tbl)
oss <- observedSumScore(grp)
result$n <- oss$n
result$observed <- oss$dist
result$expected <- result$n * tbl[,1]
names(result$observed) <- rownames(tbl)
names(result$expected) <- rownames(tbl)
result$omitted <- grp$omitted
result <- sumScoreEAPTestInternal(result)
result
}
"+.summary.sumScoreEAPTest" <- function(e1, e2) {
e2name <- deparse(substitute(e2))
if (!inherits(e2, "summary.sumScoreEAPTest")) {
stop("Don't know how to add ", e2name, " to a sumScoreEAPTest",
call. = FALSE)
}
if (length(e1$observed) != length(e2$observed)) {
stop("The two groups have a different maximum sum-score. Sum-score tests cannot be combined")
}
if (any(e1$omitted != e2$omitted)) {
stop("The two groups have different items omitted. Sum-score tests cannot be combined")
}
cb <- list(observed=e1$observed + e2$observed,
expected=e1$expected + e2$expected,
n=e1$n + e2$n,
omitted=e1$omitted)
cb <- sumScoreEAPTestInternal(cb)
cb
}
print.summary.sumScoreEAPTest <- function(x,...) {
cat(sprintf("Latent distribution fit test (n=%d):\n", x$n))
if (!is.null(x$omitted)) {
cat(paste(" Omitted:", paste(x$omitted, collapse=" "), "\n"))
}
if (!is.null(x$rms.p)) {
cat(sprintf(" RMS log(p) = %.2f\n", x$rms.p))
}
if (!is.null(x$pearson.p)) {
cat(sprintf(" Pearson X^2(%3d) = %.2f, log(p) = %.2f\n",
x$pearson.df, x$pearson.chisq, x$pearson.p))
}
}
##' Compute the sum-score EAP table
##'
##' Observed tables cannot be computed when data is
##' missing. Therefore, you can optionally omit items with the
##' greatest number of responses missing when conducting the
##' distribution test.
##'
##' When two-tier covariance structure is detected, EAP scores are
##' only reported for primary factors. It is possible to compute EAP
##' scores for specific factors, but it is not clear why this would be
##' useful because they are conditional on the specific factor sum
##' scores. Moveover, the algorithm to compute them efficiently has not been
##' published yet (as of Jun 2014).
##'
##' @template detail-group
##' @template arg-grp
##' @template arg-dots
##' @param qwidth DEPRECATED
##' @param qpoints DEPRECATED
##' @param .twotier whether to enable the two-tier optimization
##' @family scoring
##' @examples
##' # see Thissen, Pommerich, Billeaud, & Williams (1995, Table 2)
##' spec <- list()
##' spec[1:3] <- list(rpf.grm(outcomes=4))
##'
##' param <- matrix(c(1.87, .65, 1.97, 3.14,
##' 2.66, .12, 1.57, 2.69,
##' 1.24, .08, 2.03, 4.3), nrow=4)
##' # fix parameterization
##' param <- apply(param, 2, function(p) c(p[1], p[2:4] * -p[1]))
##'
##' grp <- list(spec=spec, mean=0, cov=matrix(1,1,1), param=param)
##' sumScoreEAP(grp)
sumScoreEAP <- function(grp, ..., qwidth=6.0, qpoints=49L, .twotier=TRUE) {
if (length(list(...)) > 0) {
stop(paste("Remaining parameters must be passed by name", deparse(list(...))))
}
if (!missing(qwidth) || !missing(qpoints)) complainAboutQuadSpec()
tbl <- ssEAP(grp, twotier=.twotier)
rownames(tbl) <- 0:(nrow(tbl)-1)
tbl
}
##' Compute the observed sum-score
##'
##' When \code{summary=TRUE}, tabulation uses row frequency
##' multiplied by row weight.
##'
##' @template detail-group
##' @template arg-grp
##' @template arg-dots
##' @param mask a vector of logicals indicating which items to include
##' @param summary whether to return a summary (default) or per-row scores
##' @family scoring
##' @examples
##' spec <- list()
##' spec[1:3] <- rpf.grm(outcomes=3)
##' param <- sapply(spec, rpf.rparam)
##' data <- rpf.sample(5, spec, param)
##' colnames(param) <- colnames(data)
##' grp <- list(spec=spec, param=param, data=data)
##' observedSumScore(grp)
observedSumScore <- function(grp, ..., mask, summary=TRUE) {
if (length(list(...)) > 0) {
stop(paste("Remaining parameters must be passed by name", deparse(list(...))))
}
if (missing(mask)) {
mask <- rep(TRUE, ncol(grp$param))
}
if (!summary) {
cols <- colnames(grp$param)[mask]
dat <- grp$data[,cols]
ss <- apply(sapply(dat, unclass) - 1, 1, sum)
names(ss) <- rownames(dat)
return(ss)
}
got <- .Call('_rpf_observedSumScore_cpp', grp, mask)
if (got[['n']] == 0) {
warning("Some columns are all missing; cannot compute observedSumScore")
}
class(got) <- "summary.observedSumScore"
got
}
print.summary.observedSumScore <- function(x,...) {
print(x$dist)
cat(sprintf(" N = %d\n", x$n))
}
##' Produce an item outcome by observed sum-score table
##'
##' @template arg-grp
##' @param mask a vector of logicals indicating which items to include
##' @param interest index or name of the item of interest
##' @template detail-group
##' @family scoring
##' @examples
##' set.seed(1)
##' spec <- list()
##' spec[1:3] <- rpf.grm(outcomes=3)
##' param <- sapply(spec, rpf.rparam)
##' data <- rpf.sample(5, spec, param)
##' colnames(param) <- colnames(data)
##' grp <- list(spec=spec, param=param, data=data)
##' itemOutcomeBySumScore(grp, c(FALSE,TRUE,TRUE), 1L)
itemOutcomeBySumScore <- function(grp, mask, interest) {
if (is.character(interest)) {
interest <- match(interest, colnames(grp$param))
}
got <- .Call('_rpf_itemOutcomeBySumScore_cpp', grp, mask, interest)
rownames(got$table) <- 0:(nrow(got$table)-1L)
col <- colnames(grp$param)[interest]
colnames(got$table) <- levels(grp$data[,col])
class(got) <- "summary.itemOutcomeBySumScore"
got
}
print.summary.itemOutcomeBySumScore <- function(x,...) {
print(x$table)
cat(sprintf(" N = %d\n", x$n))
}
##' Compute Expected A Posteriori (EAP) scores
##'
##' If you have missing data then you must specify
##' \code{minItemsPerScore}. This option will set scores to NA when
##' there are too few items to make an accurate score estimate. If
##' you are using the scores as point estimates without considering
##' the standard error then you should set \code{minItemsPerScore} as
##' high as you can tolerate. This will increase the amount of missing
##' data but scores will be more accurate. If you are carefully
##' considering the standard errors of the scores then you can set
##' \code{minItemsPerScore} to 1. This will mimic the behavior of most
##' other IFA software wherein scores are estimated if there is at
##' least 1 non-NA item for the score. However, it may make more sense
##' to set \code{minItemsPerScore} to 0. When set to 0, all NA rows
##' are scored to the prior distribution.
##'
##' Output is not affected by the presence of a \code{weightColumn}.
##'
##' @template detail-group
##' @template arg-grp
##' @template arg-dots
##' @param compressed output one score per observed data row even when freqColumn is set (default FALSE)
##' @family scoring
##' @examples
##' spec <- list()
##' spec[1:3] <- list(rpf.grm(outcomes=3))
##' param <- sapply(spec, rpf.rparam)
##' data <- rpf.sample(5, spec, param)
##' colnames(param) <- colnames(data)
##' grp <- list(spec=spec, param=param, data=data, minItemsPerScore=1L)
##' EAPscores(grp)
EAPscores <- function(grp, ..., compressed=FALSE) {
if (length(list(...)) > 0) {
stop(paste("Remaining parameters must be passed by name", deparse(list(...))))
}
ctbl <- .Call('_rpf_eap_wrapper', grp)
if (!compressed && !is.null(grp$freqColumn)) {
freq <- grp$data[[ grp$freqColumn ]]
rows <- sum(freq)
indexVector <- rep(NA, rows)
rx <- 1L
ix <- 1L
while (rx <= length(freq)) {
indexVector[ix:(ix + freq[rx] - 1)] <- rx
ix <- ix + freq[rx]
rx <- rx + 1L
}
ctbl <- ctbl[indexVector,]
}
ctbl
}
#' Convert response function slopes to factor loadings
#'
#' All slopes are divided by the ogive constant. Then the following
#' transformation is applied to the slope matrix,
#'
#' \deqn{\frac{\mathrm{slope}}{\left[ 1 + \mathrm{rowSums}(\mathrm{slope}^2) \right]^\frac{1}{2}}}
#'
#' @param slope a matrix with items in the columns and slopes in the rows
#' @param ogive the ogive constant (default \link{rpf.ogive})
#' @family factor model equivalence
#' @return
#' a factor loading matrix with items in the rows and factors in the columns
toFactorLoading <- function(slope, ogive=rpf.ogive) {
tmp <- t(slope / ogive)
got <- tmp / sqrt(1 + rowSums(tmp ^ 2))
h2 <- rowSums(got^2)
if(any(h2 > .975)) {
warning("Solution has Heywood cases. Interpret with caution.")
}
got
}
#' Convert factor loadings to response function slopes
#'
#' @param loading a matrix with items in the rows and factors in the columns
#' @param ogive the ogive constant (default \link{rpf.ogive})
#' @family factor model equivalence
#' @return
#' a slope matrix with items in the columns and factors in the rows
fromFactorLoading <- function(loading, ogive=rpf.ogive) {
t(ogive * loading / sqrt(1 - rowSums(loading ^ 2)))
}
#' Convert response function intercepts to factor thresholds
#'
#' @param intercept a matrix with items in the columns and intercepts in the rows
#' @param slope a matrix with items in the columns and slopes in the rows
#' @param ogive the ogive constant (default \link{rpf.ogive})
#' @family factor model equivalence
#' @return
#' a factor threshold matrix with items in the columns and factor thresholds in the rows
toFactorThreshold <- function(intercept, slope, ogive=rpf.ogive) {
tmp <- t(slope / ogive)
thr <- t(intercept / ogive)
got <- -t( thr / sqrt(1 + rowSums(tmp ^ 2)) )
got
}
#' Convert factor thresholds to response function intercepts
#'
#' @param threshold a matrix with items in the columns and thresholds in the rows
#' @param loading a matrix with items in the rows and factors in the columns
#' @param ogive the ogive constant (default \link{rpf.ogive})
#' @family factor model equivalence
#' @return
#' an item intercept matrix with items in the columns and intercepts in the rows
fromFactorThreshold <- function(threshold, loading, ogive=rpf.ogive) {
got <- t(-ogive*t(threshold) / sqrt(1 - rowSums(loading ^ 2)) )
got
}
|