File: rpf.ogive.Rd

package info (click to toggle)
r-cran-rpf 1.0.11%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,484 kB
  • sloc: cpp: 5,364; sh: 114; ansic: 41; makefile: 2
file content (45 lines) | stat: -rw-r--r-- 1,527 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/classes.R
\docType{data}
\name{rpf.ogive}
\alias{rpf.ogive}
\title{The ogive constant}
\format{
An object of class \code{numeric} of length 1.
}
\usage{
rpf.ogive
}
\description{
The ogive constant can be multiplied by the discrimination
parameter to obtain a response curve very similar to the Normal
cumulative distribution function (Haley, 1952; Molenaar, 1974).
Recently, Savalei (2006) proposed a new constant of 1.749 based on
Kullback-Leibler information.
}
\details{
In recent years, the logistic has grown in favor, and therefore,
this package does not offer any special support for this
transformation (Baker & Kim, 2004, pp. 14-18).
}
\references{
Camilli, G. (1994). Teacher's corner: Origin of the
scaling constant d=1.7 in Item Response Theory. \emph{Journal of
Educational and Behavioral Statistics, 19}(3), 293-295.

Baker & Kim (2004). \emph{Item Response Theory: Parameter
Estimation Techniques.} Marcel Dekker, Inc.

Haley, D. C. (1952). \emph{Estimation of the dosage mortality
relationship when the dose is subject to error} (Technical Report
No. 15). Stanford University Applied Mathematics and Statistics
Laboratory, Stanford, CA.

Molenaar, W. (1974). De logistische en de normale kromme [The
logistic and the normal curve]. \emph{Nederlands Tijdschrift voor de
Psychologie} 29, 415-420.

Savalei, V. (2006). Logistic approximation to the normal: The KL
rationale. \emph{Psychometrika, 71}(4), 763--767.
}
\keyword{datasets}