1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/classes.R
\docType{data}
\name{rpf.ogive}
\alias{rpf.ogive}
\title{The ogive constant}
\format{
An object of class \code{numeric} of length 1.
}
\usage{
rpf.ogive
}
\description{
The ogive constant can be multiplied by the discrimination
parameter to obtain a response curve very similar to the Normal
cumulative distribution function (Haley, 1952; Molenaar, 1974).
Recently, Savalei (2006) proposed a new constant of 1.749 based on
Kullback-Leibler information.
}
\details{
In recent years, the logistic has grown in favor, and therefore,
this package does not offer any special support for this
transformation (Baker & Kim, 2004, pp. 14-18).
}
\references{
Camilli, G. (1994). Teacher's corner: Origin of the
scaling constant d=1.7 in Item Response Theory. \emph{Journal of
Educational and Behavioral Statistics, 19}(3), 293-295.
Baker & Kim (2004). \emph{Item Response Theory: Parameter
Estimation Techniques.} Marcel Dekker, Inc.
Haley, D. C. (1952). \emph{Estimation of the dosage mortality
relationship when the dose is subject to error} (Technical Report
No. 15). Stanford University Applied Mathematics and Statistics
Laboratory, Stanford, CA.
Molenaar, W. (1974). De logistische en de normale kromme [The
logistic and the normal curve]. \emph{Nederlands Tijdschrift voor de
Psychologie} 29, 415-420.
Savalei, V. (2006). Logistic approximation to the normal: The KL
rationale. \emph{Psychometrika, 71}(4), 763--767.
}
\keyword{datasets}
|