1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{How to perform common IRT diagnostics}
\documentclass{article}
\begin{document}
<<setup, cache=FALSE, include=FALSE>>=
library(rpf)
library(ggplot2)
library(reshape2)
library(gridExtra)
@
\section{How to perform common IRT diagnostics}
Here's how to create an item characteristic curve plot for any 1
dimensional item. These are random item parameters so the curves
change every time the documentation is recreated.
<<fig.height=2.5>>=
plot.icc <- function(item, param, width=3) {
pm <- t(rpf.prob(item, param, seq(-width, width, .1)))
icc <- as.data.frame(melt(pm, varnames=c("theta",'category')))
icc$theta <- seq(-width, width, .1)
icc$category <- as.factor(icc$category)
ggplot(icc, aes(theta, value)) +
geom_line(aes(color=category)) +
ylim(0,1) + xlim(-width,width)
}
i1 <- rpf.gpcm(5)
i1.p <- rpf.rparam(i1)
i2 <- rpf.drm()
i2.p <- rpf.rparam(i2)
grid.arrange(plot.icc(i1, i1.p),
plot.icc(i2, i2.p), ncol=2)
@
Now let us look at some real data.
<<fig.height=3.5, cache=TRUE>>=
data(ms.items)
spec <- list()
spec[1:10] <- rpf.gpcm(5)
plot.info <- function(spec, param, i.name, width=3) {
if (missing(i.name)) {
i.name <- paste0('i', 1:length(spec))
}
grid <- seq(-width,width,.1)
df <- list(score=grid)
total <- numeric(length(grid))
for (ix in 1:length(spec)) {
id <- i.name[ix]
s <- spec[[ix]]
df[[id]] <- rpf.info(s, param[ix,1:rpf.numParam(s)], grid)
total <- total + df[[id]]
}
df$total <- total
df <- as.data.frame(df)
long<- melt(df, id.vars=c('score'), variable.name="item")
long$item <- factor(long$item)
ggplot(long, aes(score, value, group=item)) +
geom_line(size=1.1,aes(linetype=item, color=item)) + ylab("information")
}
param <- ms.items[,c('slope',paste0('b',1:4))]
plot.info(spec, param, ms.items[,'name'])
@
<<fig.height=3, cache=TRUE>>=
data(ms.people)
data.vs.model <- function(spec1, param, espt, item.name, width=3, data.bins=10) {
pm <- t(rpf.prob(spec1, param[1:rpf.numParam(spec1)], seq(-width, width, .1)))
icc <- as.data.frame(melt(pm, varnames=c("theta",'category')))
icc$theta <- seq(-width, width, .1)
icc$category <- as.ordered(1+max(icc$category)-icc$category) #parscale reverses stuff
icc$type <- 'model'
breaks <- seq(min(espt$score, na.rm=TRUE),
max(espt$score, na.rm=TRUE),
length.out=data.bins+1)
bin <- unclass(cut(espt$score, breaks, include.lowest = TRUE))
est <- tabulate(bin, length(levels(bin)))
if (any(est < 10)) {
warning("Some bins have less than 10 samples; try fewer data.bins")
}
eout <- array(dim=c(data.bins, spec1@outcomes+1))
for (px in 1:data.bins) {
t <- table(espt[[item.name]][bin==px], useNA="no")
eout[px,2:(spec1@outcomes+1)] <- t / sum(t)
}
eout[,1] <- ((c(breaks,0) + c(0,breaks))/2)[2:(data.bins+1)]
edf <- melt(as.data.frame(eout), id.vars=c('V1'),
variable.name="category")
edf$category <- ordered(unclass(edf$category))
edf$theta <- edf$V1
edf$V1 <- NULL
edf$type <- 'data'
both <- rbind(edf, icc)
both$type <- factor(both$type)
ggplot(both, aes(theta, value)) +
geom_line(aes(color=category, linetype=category)) + facet_wrap(~type) +
ylim(0,1) + xlim(-width,width) + labs(y="probability", x="score")
}
name <- 'msCause'
item.x <- match(name,ms.items$name)
param <- ms.items[item.x, c('slope',paste0('b',1:4))]
data.vs.model(spec[[item.x]], param,ms.people , name, data.bins=12) +
labs(title = paste0(name, ", slope = ",param[1]))
@
Let us plot one more. For msShared, categories 2 and 4 are never the
most likely choice. You can see this visually by confirming that the
curves for categories 2 and 4 are already beneath the curves for other
categories.
<<fig.height=3, cache=TRUE>>=
name <- 'msShared'
item.x <- match(name,ms.items$name)
param <- ms.items[item.x, c('slope',paste0('b',1:4))]
data.vs.model(spec[[item.x]], param,ms.people , name, data.bins=12) +
labs(title = paste0(name, ", slope = ",param[1]))
@
Item-wise covariance of residuals can be informative.
<<>>=
param <- ms.items[, c('slope',paste0('b',1:4))]
res <- rpf.1dim.residual(spec, param, ms.people[,ms.items$name], ms.people$score)
res <- res[!apply(is.na(res), 1, any),]
res.cov <- cov(res)
dimnames(res.cov) <- list(ms.items$id, ms.items$id)
round(cov(res.cov),1)
@
Let's take another dataset and look at item fit. This will show the
most overfitting and underfitting items.
<<>>=
data(science.items)
data(science.people)
scores <- science.people$trait
params <- cbind(1, science.items[,c(paste0('b',1:2))])
rownames(params) <- as.character(science.items$name)
items<-list()
items[1:25] <- rpf.gpcm(3)
responses <- science.people[,as.character(science.items$name)]
rownames(responses) <- science.people$name
fit <- rpf.1dim.fit(items, params, responses, scores, 2)
head(fit[order(-fit$outfit),])
tail(fit[order(-fit$outfit),])
@
And we can do the same with people.
<<>>=
fit <- rpf.1dim.fit(items, params, responses, scores, 1)
head(fit[order(-fit$outfit),])
tail(fit[order(-fit$outfit),])
@
\end{document}
|