File: caret.R

package info (click to toggle)
r-cran-rsample 0.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 1,696 kB
  • sloc: sh: 13; makefile: 2
file content (151 lines) | stat: -rw-r--r-- 4,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#' Convert Resampling Objects to Other Formats
#'
#' These functions can convert resampling objects between
#'  \pkg{rsample} and \pkg{caret}.
#'
#' @param object An `rset` object. Currently,
#'  `nested_cv` is not supported.
#' @return `rsample2caret` returns a list that mimics the
#'  `index` and `indexOut` elements of a
#'  `trainControl` object. `caret2rsample` returns an
#'  `rset` object of the appropriate class.
#' @export
rsample2caret <- function(object, data = c("analysis", "assessment")) {
  if(!inherits(object, "rset"))
    stop("`object` must be an `rset`", call. = FALSE)
  data <- match.arg(data)
  in_ind <- purrr::map(object$splits, as.integer, data = "analysis")
  names(in_ind) <- labels(object)
  out_ind <- purrr::map(object$splits, as.integer, data = "assessment")
  names(out_ind) <- names(in_ind)
  list(index = in_ind, indexOut = out_ind)
}

#' @rdname rsample2caret
#' @param ctrl An object produced by `trainControl` that has
#'  had the `index` and `indexOut` elements populated by
#'  integers. One method of getting this is to extract the
#'  `control` objects from an object produced by `train`.
#' @param data The data that was originally used to produce the
#'  `ctrl` object.
#' @export
caret2rsample <- function(ctrl, data = NULL) {
  if (is.null(data))
    stop("Must supply original data", call. = FALSE)
  if (!any(names(ctrl) == "index"))
    stop("`ctrl` should have an element `index`", call. = FALSE)
  if (!any(names(ctrl) == "indexOut"))
    stop("`ctrl` should have an element `indexOut`", call. = FALSE)
  if (is.null(ctrl$index))
    stop("`ctrl$index` should be populated with integers", call. = FALSE)
  if (is.null(ctrl$indexOut))
    stop("`ctrl$indexOut` should be populated with integers", call. = FALSE)

  indices <- purrr::map2(ctrl$index, ctrl$indexOut, extract_int)
  id_data <- names(indices)
  indices <- unname(indices)
  indices <- purrr::map(indices, add_data, y = data)
  indices <-
    map(indices, add_rsplit_class, cl = map_rsplit_method(ctrl$method))
  indices <- tibble::tibble(splits = indices)
  if (ctrl$method %in% c("repeatedcv", "adaptive_cv")) {
    id_data <- strsplit(id_data, split = ".", fixed = TRUE)
    id_data <- tibble::tibble(
      id  = vapply(id_data, function(x)
        x[2], character(1)),
      id2 = vapply(id_data, function(x)
        x[1], character(1))
    )
  } else {
    id_data <- tibble::tibble(id = id_data)
  }
  out <- dplyr::bind_cols(indices, id_data)
  attrib <- map_attr(ctrl)
  for (i in names(attrib))
    attr(out, i) <- attrib[[i]]
  out <- add_rset_class(out, map_rset_method(ctrl$method))
  out
}

extract_int <- function(x, y)
  list(in_id = x, out_id = y)

add_data <- function(x, y)
  c(list(data = y), x)

add_rsplit_class <- function(x, cl) {
  class(x) <- c("rsplit", cl)
  x
}

add_rset_class <- function(x, cl) {
  class(x) <- c(cl, "rset", "tbl_df", "tbl", "data.frame")
  x
}

map_rsplit_method <- function(method) {
  out <- switch(
    method,
    cv = , repeatedcv = , adaptive_cv = "vfold_split",
    boot = , boot_all =, boot632 = , optimism_boot = , adaptive_boot = "boot_split",
    LOOCV = "loo_split",
    LGOCV = , adaptive_LGOCV = "mc_split",
    timeSlice = "rof_split",
    "error"
  )
  if (out == "error")
    stop("Resampling method `",
         method,
         "` cannot be converted into an `rsplit` object",
         call. = FALSE)
  out
}

map_rset_method <- function(method) {
  out <- switch(
    method,
    cv = , repeatedcv = , adaptive_cv = "vfold_cv",
    boot = , boot_all =, boot632 = , optimism_boot = , adaptive_boot = "bootstraps",
    LOOCV = "loo_cv",
    LGOCV = , adaptive_LGOCV = "mc_cv",
    timeSlice = "rolling_origin",
    "error"
  )
  if (out == "error")
    stop("Resampling method `",
         method,
         "` cannot be converted into an `rset` object",
         call. = FALSE)
  out
}


map_attr <- function(object) {
  if (grepl("cv$", object$method)) {
    out <- list(v = object$number,
                repeats = ifelse(!is.na(object$repeats),
                             object$repeats, 1),
                strata = TRUE)
  } else if (grepl("boot", object$method)) {
    out <- list(times = object$number,
                apparent = FALSE,
                strata = FALSE)
  } else if (grepl("LGOCV$", object$method)) {
    out <- list(times = object$number,
                prop = object$p,
                strata = FALSE)
  } else if (object$method == "LOOCV") {
    out <- list()
  } else if (object$method == "timeSlice") {
    out <- list(
      initial = object$initialWindow,
      assess = object$horizon,
      cumulative = !object$fixedWindow,
      skip = object$skip
    )
  } else {
    stop("Method", object$method, "cannot be converted")
  }
  out
}