1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#' Determine the Assessment Samples
#'
#' This method and function help find which data belong in the analysis and
#' assessment sets.
#'
#' Given an `rsplit` object, `complement()` will determine which
#' of the data rows are contained in the assessment set. To save space,
#' many of the `rsplit` objects will not contain indices for the
#' assessment split.
#'
#' @param x An `rsplit` object
#' @param ... Not currently used
#' @return A integer vector.
#' @seealso [populate()]
#' @examples
#' set.seed(28432)
#' fold_rs <- vfold_cv(mtcars)
#' head(fold_rs$splits[[1]]$in_id)
#' fold_rs$splits[[1]]$out_id
#' complement(fold_rs$splits[[1]])
#' @export
complement <- function(x, ...) {
UseMethod("complement")
}
#' @export
#' @rdname complement
complement.rsplit <- function(x, ...) {
if (!is_missing_out_id(x)) {
return(x$out_id)
} else {
(1:nrow(x$data))[-unique(x$in_id)]
}
}
#' @export
#' @rdname complement
complement.rof_split <- function(x, ...) {
get_stored_out_id(x)
}
#' @export
#' @rdname complement
complement.sliding_window_split <- function(x, ...) {
get_stored_out_id(x)
}
#' @export
#' @rdname complement
complement.sliding_index_split <- function(x, ...) {
get_stored_out_id(x)
}
#' @export
#' @rdname complement
complement.sliding_period_split <- function(x, ...) {
get_stored_out_id(x)
}
get_stored_out_id <- function(x) {
out_id <- x$out_id
if (length(out_id) == 0L) {
return(out_id)
}
if (all(is.na(out_id))) {
rlang::abort("Cannot derive the assessment set for this type of resampling.")
}
out_id
}
#' @export
#' @rdname complement
complement.apparent_split <- function(x, ...) {
if (!is_missing_out_id(x)) {
return(x$out_id)
} else {
1:nrow(x$data)
}
}
#' @export
complement.default <- function(x, ...) {
cls <- paste0("'", class(x), "'", collapse = ", ")
rlang::abort(
paste("No `complement()` method for this class(es)", cls)
)
}
# Get the indices of the analysis set from the assessment set
default_complement <- function(ind, n) {
list(
analysis = setdiff(1:n, ind),
assessment = unique(ind)
)
}
#' Add Assessment Indices
#'
#' Many `rsplit` and `rset` objects do not contain indicators for
#' the assessment samples. `populate()` can be used to fill the slot
#' for the appropriate indices.
#' @param x A `rsplit` and `rset` object.
#' @param ... Not currently used
#' @return An object of the same kind with the integer indices.
#' @examples
#' set.seed(28432)
#' fold_rs <- vfold_cv(mtcars)
#'
#' fold_rs$splits[[1]]$out_id
#' complement(fold_rs$splits[[1]])
#'
#' populate(fold_rs$splits[[1]])$out_id
#'
#' fold_rs_all <- populate(fold_rs)
#' fold_rs_all$splits[[1]]$out_id
#' @export
populate <- function(x, ...) UseMethod("populate")
#' @export
populate.rsplit <- function(x, ...) {
x$out_id <- complement(x, ...)
x
}
#' @export
populate.rset <- function(x, ...) {
x$splits <- map(x$splits, populate)
x
}
## This will remove the assessment indices from an rsplit object
rm_out <- function(x) {
x$out_id <- NA
x
}
is_missing_out_id <- function(x) {
identical(x$out_id, NA)
}
|