1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#' Make groupings for grouped rsplits
#'
#' This function powers grouped resampling by splitting the data based upon
#' a grouping variable and returning the assessment set indices for each
#' split.
#'
#' @inheritParams vfold_cv
#' @param group A variable in `data` (single character or name) used for
#' grouping observations with the same value to either the analysis or
#' assessment set within a fold.
#' @param balance If `v` is less than the number of unique groups, how should
#' groups be combined into folds? Should be one of
#' `"groups"`, `"observations"`, `"prop"`.
#' @param ... Arguments passed to balance functions.
#'
#' @details
#' Not all `balance` options are accepted -- or make sense -- for all resampling
#' functions. For instance, `balance = "prop"` assigns groups to folds at
#' random, meaning that any given observation is not guaranteed to be in one
#' (and only one) assessment set. That means `balance = "prop"` can't
#' be used with [group_vfold_cv()], and so isn't an option available for that
#' function.
#'
#' Similarly, [group_mc_cv()] and its derivatives don't assign data to one (and
#' only one) assessment set, but rather allow each observation to be in an
#' assessment set zero-or-more times. As a result, those functions don't have
#' a `balance` argument, and under the hood always specify `balance = "prop"`
#' when they call [make_groups()].
#'
#' @keywords internal
make_groups <- function(data,
group,
v,
balance = c("groups", "observations", "prop"),
strata = NULL,
...) {
rlang::check_dots_used(call = rlang::caller_env())
balance <- rlang::arg_match(balance, error_call = rlang::caller_env())
data_ind <- tibble(
..index = 1:nrow(data),
..group = group
)
data_ind$..group <- as.character(data_ind$..group)
res <- switch(
balance,
"groups" = balance_groups(
data_ind = data_ind,
v = v,
strata = strata,
...
),
"observations" = balance_observations(
data_ind = data_ind,
v = v,
strata = strata,
...
),
"prop" = balance_prop(
data_ind = data_ind,
v = v,
strata = strata,
...
)
)
data_ind <- res$data_ind
keys <- res$keys
data_ind$..group <- as.character(data_ind$..group)
keys$..group <- as.character(keys$..group)
data_ind <- data_ind %>%
full_join(keys, by = "..group") %>%
arrange(..index)
split_unnamed(data_ind$..index, data_ind$..folds)
}
balance_groups <- function(data_ind, v, strata = NULL, ...) {
if (is.null(strata)) {
balance_groups_normal(data_ind, v, ...)
} else {
balance_groups_strata(data_ind, v, strata, ...)
}
}
balance_groups_normal <- function(data_ind, v, ...) {
rlang::check_dots_empty()
unique_groups <- unique(data_ind$..group)
keys <- data.frame(
..group = unique_groups,
..folds = sample(
rep(seq_len(v), length.out = length(unique_groups))
)
)
list(
data_ind = data_ind,
keys = keys
)
}
balance_groups_strata <- function(data_ind, v, strata, ...) {
rlang::check_dots_empty()
data_ind$..strata <- strata
# Create a table that's all the unique group x strata combinations:
keys <- vctrs::vec_unique(data_ind[c("..group", "..strata")])
# Create as many fold IDs as there are group x strata,
# in repeating order (1, 2, ..., n, 1, 2, ..., n)
folds <- rep(1:v, length.out = nrow(keys))
# Split the folds based on how many groups are within each strata
# So if the first strata in sort is 3, and v is 2, that strata gets a
# c(1, 2, 1) for fold IDs
#
# This means that, if nrow(keys) %% v == 0, each fold should have
# the same number of groups from each strata
#
# We randomize "keys" here so that the function is stochastic even for
# strata with only one group:
unique_strata <- unique(keys$..strata)
keys_order <- sample.int(length(unique_strata))
# Re-order the keys data.frame based on the reshuffled strata variable:
keys <- keys[
order(match(keys$..strata, unique_strata[keys_order])),
]
# And split both folds and keys with the reordered strata vector:
folds <- split_unnamed(folds, keys$..strata)
keys <- split_unnamed(keys, keys$..strata)
# Randomly assign fold IDs to each group within each strata
keys <- purrr::map2(
keys,
folds,
function(x, y) {
x$..folds <- sample(y)
x
}
)
keys <- dplyr::bind_rows(keys)
keys <- keys[c("..group", "..folds")]
list(
data_ind = data_ind,
keys = keys
)
}
balance_observations <- function(data_ind, v, strata = NULL, ...) {
rlang::check_dots_empty()
n_obs <- nrow(data_ind)
target_per_fold <- 1 / v
# This is the core difference between stratification and not:
#
# Without stratification, data_ind is broken into v groups,
# which are roughly balanced based on the number of observations
#
# With strata, data_ind is split up by strata, and then each _split_
# is broken into v groups (which are then combined with the other strata);
# the balancing for each fold is done separately inside each strata "split"
data_splits <- if (is.null(strata)) {
list(data_ind)
} else {
split_unnamed(data_ind, strata)
}
freq_table <- purrr::map_dfr(
data_splits,
balance_observations_helper,
v = v,
target_per_fold = target_per_fold
)
collapse_groups(freq_table, data_ind, v)
}
balance_observations_helper <- function(data_split, v, target_per_fold) {
n_obs <- nrow(data_split)
# Create a frequency table counting how many of each group are in the data:
freq_table <- vec_count(data_split$..group, sort = "location")
# Randomly shuffle that table, then assign the first few rows to folds
# (to ensure that each fold gets at least one group assigned):
freq_table <- freq_table[sample.int(nrow(freq_table)), ]
freq_table$assignment <- NA
# Assign the first `v` rows to folds, so that each fold has _some_ data:
freq_table$assignment[seq_len(v)] <- seq_len(v)
# Each run of this loop assigns one "NA" assignment to a fold,
# so we won't get caught in an endless loop here
while (any(is.na(freq_table$assignment))) {
# Get the index of the next row to be assigned, and its count:
next_row <- which(is.na(freq_table$assignment))[[1]]
next_size <- freq_table[next_row, ]$count
# Calculate which fold to assign this new row into:
group_breakdown <- freq_table %>%
# The only NA column in freq_table should be assignment
# So this should only drop un-assigned groups:
stats::na.omit() %>%
# Group by fold assignments and count data in each fold:
dplyr::group_by(.data$assignment) %>%
dplyr::summarise(count = sum(.data$count), .groups = "drop") %>%
# Calculate...:
dplyr::mutate(
# The proportion of data in each fold so far,
prop = .data$count / n_obs,
# The amount off from the target proportion so far,
pre_error = abs(.data$prop - target_per_fold),
# The amount off from the target proportion if we add this new group,
if_added_count = .data$count + next_size,
if_added_prop = .data$if_added_count / n_obs,
post_error = abs(.data$if_added_prop - target_per_fold),
# And how much better or worse adding this new group would make things
improvement = .data$post_error - .data$pre_error
)
# Assign the group in question to the best fold and move on to the next one:
most_improved <- which.min(group_breakdown$improvement)
freq_table[next_row, ]$assignment <-
group_breakdown[most_improved, ]$assignment
}
freq_table
}
balance_prop <- function(prop, data_ind, v, replace = FALSE, strata = NULL, ...) {
rlang::check_dots_empty()
check_prop(prop, replace)
# This is the core difference between stratification and not:
#
# Without stratification, `prop`% of `data_ind` is sampled `v` times;
# the resampling is done with the entire set of groups
#
# With strata, data_ind is split up by strata, and then each _split_
# has `prop`% of `data_ind` is sampled `v` times;
# the resampling for each iteration is done inside each strata "split"
data_splits <- if (is.null(strata)) {
list(data_ind)
} else {
split_unnamed(data_ind, strata)
}
freq_table <- purrr::map_dfr(
data_splits,
balance_prop_helper,
prop = prop,
v = v,
replace = replace
)
collapse_groups(freq_table, data_ind, v)
}
balance_prop_helper <- function(prop, data_ind, v, replace) {
freq_table <- vec_count(data_ind$..group, sort = "location")
# Calculate how many groups to sample each iteration
# If sampling with replacement,
# set `n` to the number of resamples we'd need
# if we somehow got the smallest group every time.
# If sampling without replacement, just reshuffle all the groups.
n <- nrow(freq_table)
if (replace) n <- n * prop * sum(freq_table$count) / min(freq_table$count)
n <- ceiling(n)
purrr::map_dfr(
seq_len(v),
function(x) {
row_idx <- sample.int(nrow(freq_table), n, replace = replace)
work_table <- freq_table[row_idx, ]
cumulative_proportion <- cumsum(work_table$count) / sum(freq_table$count)
crosses_target <- which(cumulative_proportion > prop)[[1]]
is_closest <- cumulative_proportion[c(crosses_target, crosses_target - 1)]
is_closest <- which.min(abs(is_closest - prop)) - 1
crosses_target <- crosses_target - is_closest
out <- work_table[seq_len(crosses_target), ]
out$assignment <- x
out
}
)
}
check_prop <- function(prop, replace) {
acceptable_prop <- is.numeric(prop)
acceptable_prop <- acceptable_prop &&
((prop <= 1 && replace) || (prop < 1 && !replace))
acceptable_prop <- acceptable_prop && prop > 0
if (!acceptable_prop) {
rlang::abort(
"`prop` must be a number between 0 and 1.",
call = rlang::caller_env()
)
}
}
collapse_groups <- function(freq_table, data_ind, v) {
data_ind <- dplyr::left_join(data_ind, freq_table, by = c("..group" = "key"))
data_ind$..group <- data_ind$assignment
data_ind <- data_ind[c("..index", "..group")]
# If a group was never assigned a fold, then its `..group` is NA
#
# If we leave that alone, it winds up messing up our fold assignments,
# because it will be assigned some value in `seq_len(v)`
#
# So instead, we drop those groups here:
data_ind <- stats::na.omit(data_ind)
unique_groups <- unique(data_ind$..group)
keys <- data.frame(
..group = unique_groups,
..folds = sample(rep(seq_len(v), length.out = length(unique_groups)))
)
list(
data_ind = data_ind,
keys = keys
)
}
validate_group <- function(group, data, call = rlang::caller_env()) {
if (!missing(group)) {
group <- tidyselect::vars_select(names(data), !!enquo(group))
if (length(group) == 0) {
group <- NULL
}
}
if (is.null(group) || !is.character(group) || length(group) != 1) {
rlang::abort(
"`group` should be a single character value for the column that will be used for splitting.",
call = call
)
}
if (!any(names(data) == group)) {
rlang::abort("`group` should be a column in `data`.", call = call)
}
group
}
|