File: mc.R

package info (click to toggle)
r-cran-rsample 1.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,872 kB
  • sloc: sh: 13; makefile: 2
file content (256 lines) | stat: -rw-r--r-- 6,868 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#' Monte Carlo Cross-Validation
#'
#' One resample of Monte Carlo cross-validation takes a random sample (without
#'  replacement) of the original data set to be used for analysis. All other
#'  data points are added to the assessment set.
#' @template strata_details
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param prop The proportion of data to be retained for modeling/analysis.
#' @param times The number of times to repeat the sampling.
#' @export
#' @return An tibble with classes `mc_cv`, `rset`, `tbl_df`, `tbl`, and
#'  `data.frame`. The results include a column for the data split objects and a
#'  column called `id` that has a character string with the resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' mc_cv(mtcars, times = 2)
#' mc_cv(mtcars, prop = .5, times = 2)
#'
#' library(purrr)
#' data(wa_churn, package = "modeldata")
#'
#' set.seed(13)
#' resample1 <- mc_cv(wa_churn, times = 3, prop = .5)
#' map_dbl(
#'   resample1$splits,
#'   function(x) {
#'     dat <- as.data.frame(x)$churn
#'     mean(dat == "Yes")
#'   }
#' )
#'
#' set.seed(13)
#' resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
#' map_dbl(
#'   resample2$splits,
#'   function(x) {
#'     dat <- as.data.frame(x)$churn
#'     mean(dat == "Yes")
#'   }
#' )
#'
#' set.seed(13)
#' resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
#' map_dbl(
#'   resample3$splits,
#'   function(x) {
#'     dat <- as.data.frame(x)$churn
#'     mean(dat == "Yes")
#'   }
#' )
#' @export
mc_cv <- function(data, prop = 3 / 4, times = 25,
                  strata = NULL, breaks = 4, pool = 0.1, ...) {
  if (!missing(strata)) {
    strata <- tidyselect::vars_select(names(data), !!enquo(strata))
    if (length(strata) == 0) strata <- NULL
  }

  strata_check(strata, data)

  split_objs <-
    mc_splits(
      data = data,
      prop = prop,
      times = times,
      strata = strata,
      breaks = breaks,
      pool = pool
    )

  ## We remove the holdout indices since it will save space and we can
  ## derive them later when they are needed.

  split_objs$splits <- map(split_objs$splits, rm_out)

  if (!is.null(strata)) names(strata) <- NULL
  mc_att <- list(
    prop = prop,
    times = times,
    strata = strata,
    breaks = breaks,
    pool = pool
  )

  new_rset(
    splits = split_objs$splits,
    ids = split_objs$id,
    attrib = mc_att,
    subclass = c("mc_cv", "rset")
  )
}

# Get the indices of the assessment set from the analysis set
mc_complement <- function(ind, n) {
  list(
    analysis = ind,
    assessment = setdiff(1:n, ind)
  )
}


mc_splits <- function(data, prop = 3 / 4, times = 25,
                      strata = NULL, breaks = 4, pool = 0.1) {
  if (!is.numeric(prop) | prop >= 1 | prop <= 0) {
    rlang::abort("`prop` must be a number on (0, 1).")
  }

  n <- nrow(data)
  if (is.null(strata)) {
    indices <- purrr::map(rep(n, times), sample, size = floor(n * prop))
  } else {
    stratas <- tibble::tibble(
      idx = 1:n,
      strata = make_strata(getElement(data, strata),
        breaks = breaks,
        pool = pool
      )
    )
    stratas <- split_unnamed(stratas, stratas$strata)
    stratas <-
      purrr::map_df(stratas, strat_sample, prop = prop, times = times)
    indices <- split_unnamed(stratas$idx, stratas$rs_id)
  }
  indices <- lapply(indices, mc_complement, n = n)
  split_objs <-
    purrr::map(indices, make_splits, data = data, class = "mc_split")
  list(
    splits = split_objs,
    id = names0(length(split_objs), "Resample")
  )
}

strat_sample <- function(x, prop, times, ...) {
  n <- nrow(x)
  idx <- purrr::map(rep(n, times), sample, size = floor(n * prop), ...)
  out <- purrr::map_df(idx, function(ind, x) x[sort(ind), "idx"], x = x)
  out$rs_id <- rep(1:times, each = floor(n * prop))
  out
}

#' Group Monte Carlo Cross-Validation
#'
#' Group Monte Carlo cross-validation creates splits of the data based
#'  on some grouping variable (which may have more than a single row
#'  associated with it). One resample of Monte Carlo cross-validation takes a
#'  random sample (without replacement) of groups in the original data set to be
#'  used for analysis. All other data points are added to the assessment set.
#'  A common use of this kind of resampling is when you have
#'  repeated measures of the same subject.
#'
#' @inheritParams mc_cv
#' @inheritParams make_groups
#' @export
#' @return A tibble with classes `group_mc_cv`,
#'  `rset`, `tbl_df`, `tbl`, and `data.frame`.
#'  The results include a column for the data split objects and an
#'  identification variable.
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' set.seed(123)
#' group_mc_cv(ames, group = Neighborhood, times = 5)
#'
#' @export
group_mc_cv <- function(data, group, prop = 3 / 4, times = 25, ...,
                        strata = NULL, pool = 0.1) {

  rlang::check_dots_empty()

  group <- validate_group({{ group }}, data)

  if (!missing(strata)) {
    strata <- check_grouped_strata({{ group }}, {{ strata }}, pool, data)
  }

  split_objs <-
    group_mc_splits(
      data = data,
      group = group,
      prop = prop,
      times = times,
      strata = strata,
      pool = pool
    )

  # This is needed for printing checks; strata can't be missing for mc_cv
  if (is.null(strata)) strata <- FALSE

  ## We remove the holdout indices since it will save space and we can
  ## derive them later when they are needed.
  split_objs$splits <- map(split_objs$splits, rm_out)

  mc_att <- list(
    group = group,
    prop = prop,
    times = times,
    balance = "prop",
    strata = strata,
    pool = pool
  )

  new_rset(
    splits = split_objs$splits,
    ids = split_objs$id,
    attrib = mc_att,
    subclass = c("group_mc_cv", "mc_cv", "group_rset", "rset")
  )
}

group_mc_splits <- function(data, group, prop = 3 / 4, times = 25, strata = NULL, pool = 0.1) {

  group <- getElement(data, group)
  if (!is.null(strata)) {
    strata <- getElement(data, strata)
    strata <- as.character(strata)
    strata <- make_strata(strata, pool = pool)
  }

  n <- nrow(data)

  indices <- make_groups(
    data,
    group,
    times,
    balance = "prop",
    prop = prop,
    replace = FALSE,
    strata = strata
  )

  indices <- lapply(indices, mc_complement, n = n)

  split_objs <-
    purrr::map(
      indices,
      make_splits,
      data = data,
      class = c("grouped_mc_split", "mc_split")
    )

  all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
  if (any(all_assessable == 0)) {
    rlang::abort(
      c(
        "Some assessment sets contained zero rows",
        i = "Consider using a non-grouped resampling method"
      ),
      call = rlang::caller_env()
    )
  }

  list(
    splits = split_objs,
    id = names0(length(split_objs), "Resample")
  )
}