1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
|
#' Time-based Resampling
#'
#' @description
#' These resampling functions are focused on various forms of _time series_
#' resampling.
#'
#' - `sliding_window()` uses the row number when computing the resampling
#' indices. It is independent of any time index, but is useful with
#' completely regular series.
#'
#' - `sliding_index()` computes resampling indices relative to the `index`
#' column. This is often a Date or POSIXct column, but doesn't have to be.
#' This is useful when resampling irregular series, or for using irregular
#' lookback periods such as `lookback = lubridate::years(1)` with daily
#' data (where the number of days in a year may vary).
#'
#' - `sliding_period()` first breaks up the `index` into less granular groups
#' based on `period`, and then uses that to construct the resampling indices.
#' This is extremely useful for constructing rolling monthly or yearly
#' windows from daily data.
#'
#' @inheritParams rlang::args_dots_empty
#'
#' @param data A data frame.
#'
#' @param index The index to compute resampling indices relative to, specified
#' as a bare column name. This must be an existing column in `data`.
#'
#' - For `sliding_index()`, this is commonly a date vector, but is not
#' required.
#'
#' - For `sliding_period()`, it is required that this is a Date or POSIXct
#' vector.
#'
#' The `index` must be an _increasing_ vector, but duplicate values are
#' allowed. Additionally, the index cannot contain any missing values.
#'
#' @param period The period to group the `index` by. This is specified as a
#' single string, such as `"year"` or `"month"`. See the `.period` argument
#' of [slider::slide_period()] for the full list of options and further
#' explanation.
#'
#' @param lookback The number of elements to look back from the current element
#' when computing the resampling indices of the analysis set. The current
#' row is always included in the analysis set.
#'
#' - For `sliding_window()`, a single integer defining the number of rows to
#' look back from the current row.
#'
#' - For `sliding_index()`, a single object that will be subtracted from the
#' `index` as `index - lookback` to define the boundary of where to start
#' searching for rows to include in the current resample. This is often
#' an integer value corresponding to the number of days to look back,
#' or a lubridate Period object.
#'
#' - For `sliding_period()`, a single integer defining the number of groups
#' to look back from the current group, where the groups were defined from
#' breaking up the `index` according to the `period`.
#'
#' In all cases, `Inf` is also allowed to force an expanding window.
#'
#' @param assess_start,assess_stop This combination of arguments determines
#' how far into the future to look when constructing the assessment set.
#' Together they construct a range of
#' `[index + assess_start, index + assess_stop]` to search for rows to include
#' in the assessment set.
#'
#' Generally, `assess_start` will always be `1` to indicate that the first
#' value to potentially include in the assessment set should start one element
#' after the current row, but it can be increased to a larger value to
#' create "gaps" between the analysis and assessment set if you are worried
#' about high levels of correlation in short term forecasting.
#'
#' - For `sliding_window()`, these are both single integers defining the
#' number of rows to look forward from the current row.
#'
#' - For `sliding_index()`, these are single objects that will be added
#' to the `index` to compute the range to search for rows to include
#' in the assessment set. This is often an integer value corresponding to
#' the number of days to look forward, or a lubridate Period object.
#'
#' - For `sliding_period()`, these are both single integers defining the
#' number of groups to look forward from the current group, where the groups
#' were defined from breaking up the `index` according to the `period`.
#'
#' @param complete A single logical. When using `lookback` to compute the
#' analysis sets, should only complete windows be considered? If set to
#' `FALSE`, partial windows will be used until it is possible to create
#' a complete window (based on `lookback`). This is a way to use an
#' expanding window up to a certain point, and then switch to a sliding
#' window.
#'
#' @param step A single positive integer. After computing the resampling
#' indices, `step` is used to thin out the results by selecting every
#' `step`-th result by subsetting the indices with
#' `seq(1L, n_indices, by = step)`. `step` is applied after `skip`.
#' Note that `step` is independent of any time `index` used.
#'
#' @param skip A single positive integer, or zero. After computing the
#' resampling indices, the first `skip` results will be dropped by subsetting
#' the indices with `seq(skip + 1L, n_indices)`. This can be especially
#' useful when combined with `lookback = Inf`, which creates an expanding
#' window starting from the first row. By skipping forward, you can drop
#' the first few windows that have very few data points. `skip` is
#' applied before `step`. Note that `skip` is independent of any time
#' `index` used.
#'
#' @param every A single positive integer. The number of periods to group
#' together.
#'
#' For example, if the `period` was set to `"year"` with an `every`
#' value of 2, then the years 1970 and 1971 would be placed in the same
#' group.
#'
#' @param origin The reference date time value. The default when left
#' as `NULL` is the epoch time of `1970-01-01 00:00:00`,
#' _in the time zone of the index_.
#'
#' This is generally used to define the anchor time to count from,
#' which is relevant when the `every` value is `> 1`.
#'
#' @seealso
#' [rolling_origin()]
#'
#' [slider::slide()], [slider::slide_index()], and [slider::slide_period()],
#' which power these resamplers.
#'
#' @name slide-resampling
#'
#' @examplesIf rlang::is_installed("modeldata")
#' library(vctrs)
#' library(tibble)
#' library(modeldata)
#' data("Chicago")
#'
#' index <- new_date(c(1, 3, 4, 7, 8, 9, 13, 15, 16, 17))
#' df <- tibble(x = 1:10, index = index)
#' df
#'
#' # Look back two rows beyond the current row, for a total of three rows
#' # in each analysis set. Each assessment set is composed of the two rows after
#' # the current row.
#' sliding_window(df, lookback = 2, assess_stop = 2)
#'
#' # Same as before, but step forward by 3 rows between each resampling slice,
#' # rather than just by 1.
#' rset <- sliding_window(df, lookback = 2, assess_stop = 2, step = 3)
#' rset
#'
#' analysis(rset$splits[[1]])
#' analysis(rset$splits[[2]])
#'
#' # Now slide relative to the `index` column in `df`. This time we look back
#' # 2 days from the current row's `index` value, and 2 days forward from
#' # it to construct the assessment set. Note that this series is irregular,
#' # so it produces different results than `sliding_window()`. Additionally,
#' # note that it is entirely possible for the assessment set to contain no
#' # data if you have a highly irregular series and "look forward" into a
#' # date range where no data points actually exist!
#' sliding_index(df, index, lookback = 2, assess_stop = 2)
#'
#' # With `sliding_period()`, we can break up our date index into less granular
#' # chunks, and slide over them instead of the index directly. Here we'll use
#' # the Chicago data, which contains daily data spanning 16 years, and we'll
#' # break it up into rolling yearly chunks. Three years worth of data will
#' # be used for the analysis set, and one years worth of data will be held out
#' # for performance assessment.
#' sliding_period(
#' Chicago,
#' date,
#' "year",
#' lookback = 2,
#' assess_stop = 1
#' )
#'
#' # Because `lookback = 2`, three years are required to form a "complete"
#' # window of data. To allow partial windows, set `complete = FALSE`.
#' # Here that first constructs two expanding windows until a complete three
#' # year window can be formed, at which point we switch to a sliding window.
#' sliding_period(
#' Chicago,
#' date,
#' "year",
#' lookback = 2,
#' assess_stop = 1,
#' complete = FALSE
#' )
#'
#' # Alternatively, you could break the resamples up by month. Here we'll
#' # use an expanding monthly window by setting `lookback = Inf`, and each
#' # assessment set will contain two months of data. To ensure that we have
#' # enough data to fit our models, we'll `skip` the first 4 expanding windows.
#' # Finally, to thin out the results, we'll `step` forward by 2 between
#' # each resample.
#' sliding_period(
#' Chicago,
#' date,
#' "month",
#' lookback = Inf,
#' assess_stop = 2,
#' skip = 4,
#' step = 2
#' )
NULL
#' @export
#' @rdname slide-resampling
sliding_window <- function(data,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L) {
rlang::check_dots_empty()
if (!is.data.frame(data)) {
rlang::abort("`data` must be a data frame.")
}
lookback <- check_lookback(lookback)
assess_start <- check_assess(assess_start, "assess_start")
assess_stop <- check_assess(assess_stop, "assess_stop")
step <- check_step(step)
skip <- check_skip(skip)
if (assess_start > assess_stop) {
rlang::abort("`assess_start` must be less than or equal to `assess_stop`.")
}
seq <- vctrs::vec_seq_along(data)
id_in <- slider::slide(
.x = seq,
.f = identity,
.before = lookback,
.after = 0L,
.step = 1L,
.complete = complete
)
id_out <- slider::slide(
.x = seq,
.f = identity,
.before = -assess_start,
.after = assess_stop,
.step = 1L,
.complete = TRUE
)
indices <- compute_complete_indices(id_in, id_out)
if (!identical(skip, 0L)) {
indices <- slice_skip(indices, skip)
}
if (!identical(step, 1L)) {
indices <- slice_step(indices, step)
}
splits <- purrr::map(
indices,
~ make_splits(.x, data = data, class = "sliding_window_split")
)
ids <- names0(length(indices), prefix = "Slice")
attrib <- list(
lookback = lookback,
assess_start = assess_start,
assess_stop = assess_stop,
complete = complete,
step = step,
skip = skip
)
new_rset(
splits = splits,
ids = ids,
attrib = attrib,
subclass = c("sliding_window", "rset")
)
}
# ------------------------------------------------------------------------------
#' @export
#' @rdname slide-resampling
sliding_index <- function(data,
index,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L) {
rlang::check_dots_empty()
if (!is.data.frame(data)) {
rlang::abort("`data` must be a data frame.")
}
step <- check_step(step)
skip <- check_skip(skip)
index <- rlang::enexpr(index)
loc <- tidyselect::eval_select(index, data)
if (length(loc) != 1L) {
rlang::abort("`index` must specify exactly one column in `data`.")
}
index_attrib <- index
index <- data[[loc]]
seq <- vctrs::vec_seq_along(data)
id_in <- slider::slide_index(
.x = seq,
.i = index,
.f = identity,
.before = lookback,
.after = 0L,
.complete = complete
)
id_out <- slider::slide_index(
.x = seq,
.i = index,
.f = identity,
.before = -assess_start,
.after = assess_stop,
.complete = TRUE
)
indices <- compute_complete_indices(id_in, id_out)
if (!identical(skip, 0L)) {
indices <- slice_skip(indices, skip)
}
if (!identical(step, 1L)) {
indices <- slice_step(indices, step)
}
splits <- purrr::map(
indices,
~ make_splits(.x, data = data, class = "sliding_index_split")
)
ids <- names0(length(indices), prefix = "Slice")
attrib <- list(
index = index_attrib,
lookback = lookback,
assess_start = assess_start,
assess_stop = assess_stop,
complete = complete,
step = step,
skip = skip
)
new_rset(
splits = splits,
ids = ids,
attrib = attrib,
subclass = c("sliding_index", "rset")
)
}
# ------------------------------------------------------------------------------
#' @export
#' @rdname slide-resampling
sliding_period <- function(data,
index,
period,
...,
lookback = 0L,
assess_start = 1L,
assess_stop = 1L,
complete = TRUE,
step = 1L,
skip = 0L,
every = 1L,
origin = NULL) {
rlang::check_dots_empty()
if (!is.data.frame(data)) {
rlang::abort("`data` must be a data frame.")
}
lookback <- check_lookback(lookback)
assess_start <- check_assess(assess_start, "assess_start")
assess_stop <- check_assess(assess_stop, "assess_stop")
step <- check_step(step)
if (assess_start > assess_stop) {
rlang::abort("`assess_start` must be less than or equal to `assess_stop`.")
}
index <- rlang::enexpr(index)
loc <- tidyselect::eval_select(index, data)
if (length(loc) != 1L) {
rlang::abort("`index` must specify exactly one column in `data`.")
}
index_attrib <- index
index <- data[[loc]]
seq <- vctrs::vec_seq_along(data)
id_in <- slider::slide_period(
.x = seq,
.i = index,
.period = period,
.f = identity,
.every = every,
.origin = origin,
.before = lookback,
.after = 0L,
.complete = complete
)
id_out <- slider::slide_period(
.x = seq,
.i = index,
.period = period,
.f = identity,
.every = every,
.origin = origin,
.before = -assess_start,
.after = assess_stop,
.complete = TRUE
)
indices <- compute_complete_indices(id_in, id_out)
if (!identical(skip, 0L)) {
indices <- slice_skip(indices, skip)
}
if (!identical(step, 1L)) {
indices <- slice_step(indices, step)
}
splits <- purrr::map(
indices,
~ make_splits(.x, data = data, class = "sliding_period_split")
)
ids <- names0(length(indices), prefix = "Slice")
attrib <- list(
index = index_attrib,
period = period,
lookback = lookback,
assess_start = assess_start,
assess_stop = assess_stop,
complete = complete,
step = step,
skip = skip,
every = every,
origin = origin
)
new_rset(
splits = splits,
ids = ids,
attrib = attrib,
subclass = c("sliding_period", "rset")
)
}
# ------------------------------------------------------------------------------
check_lookback <- function(x) {
if (vctrs::vec_size(x) != 1L) {
rlang::abort(paste0("`lookback` must have size 1."))
}
if (identical(x, Inf)) {
return(x)
}
if (!rlang::is_integerish(x, finite = TRUE)) {
rlang::abort(paste0("`lookback` must be an integer of size 1, or `Inf`."))
}
if (x < 0L) {
rlang::abort(paste0("`lookback` must be positive, or zero."))
}
vctrs::vec_cast(x, integer(), x_arg = "lookback")
}
check_assess <- function(x, arg) {
if (vctrs::vec_size(x) != 1L) {
rlang::abort(paste0("`", arg, "` must have size 1."))
}
if (identical(x, Inf)) {
return(x)
}
if (!rlang::is_integerish(x, finite = TRUE)) {
rlang::abort(paste0("`", arg, "` must be an integer of size 1, or `Inf`."))
}
if (x <= 0L) {
rlang::abort(paste0("`", arg, "` must be positive."))
}
vctrs::vec_cast(x, integer(), x_arg = arg)
}
check_step <- function(x) {
if (vctrs::vec_size(x) != 1L) {
rlang::abort(paste0("`step` must have size 1."))
}
if (!rlang::is_integerish(x, finite = TRUE)) {
rlang::abort(paste0("`step` must be an integer of size 1."))
}
if (x <= 0L) {
rlang::abort(paste0("`step` must be positive."))
}
vctrs::vec_cast(x, integer(), x_arg = "step")
}
check_skip <- function(x) {
if (vctrs::vec_size(x) != 1L) {
rlang::abort(paste0("`skip` must have size 1."))
}
if (!rlang::is_integerish(x, finite = TRUE)) {
rlang::abort(paste0("`skip` must be an integer of size 1."))
}
if (x < 0L) {
rlang::abort(paste0("`skip` must be positive, or zero."))
}
vctrs::vec_cast(x, integer(), x_arg = "skip")
}
compute_complete_indices <- function(id_in, id_out) {
# Remove where either list has a `NULL` element.
# These are incomplete windows.
id_in_na <- vctrs::vec_detect_missing(id_in)
id_out_na <- vctrs::vec_detect_missing(id_out)
id_either_na <- id_in_na | id_out_na
id_in <- vctrs::vec_slice(id_in, !id_either_na)
id_out <- vctrs::vec_slice(id_out, !id_either_na)
purrr::map2(id_in, id_out, merge_lists)
}
slice_skip <- function(indices, skip) {
n_indices <- length(indices)
slicer <- rlang::seq2(skip + 1L, n_indices)
vctrs::vec_slice(indices, slicer)
}
slice_step <- function(indices, step) {
n_indices <- length(indices)
slicer <- seq2_by(1L, n_indices, by = step)
indices <- vctrs::vec_slice(indices, slicer)
}
seq2_by <- function(from, to, by) {
if (length(from) != 1) {
rlang::abort("`from` must be length one")
}
if (length(to) != 1) {
rlang::abort("`to` must be length one")
}
by <- as.integer(by)
if (length(by) != 1) {
rlang::abort("`by` must be length one")
}
if (by <= 0L) {
rlang::abort("`by` must be positive")
}
if (from > to) {
integer()
} else {
seq.int(from, to, by = by)
}
}
|