1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
#' Tidy Resampling Object
#'
#' The `tidy` function from the \pkg{broom} package can be used on `rset` and
#' `rsplit` objects to generate tibbles with which rows are in the analysis and
#' assessment sets.
#' @param x A `rset` or `rsplit` object
#' @param unique_ind Should unique row identifiers be returned? For example,
#' if `FALSE` then bootstrapping results will include multiple rows in the
#' sample for the same row in the original data.
#' @param ... Not currently used.
#' @return A tibble with columns `Row` and `Data`. The latter has possible
#' values "Analysis" or "Assessment". For `rset` inputs, identification columns
#' are also returned but their names and values depend on the type of
#' resampling. `vfold_cv` contains a column "Fold" and, if repeats are used,
#' another called "Repeats". `bootstraps` and `mc_cv` use the column
#' "Resample".
#' @details Note that for nested resampling, the rows of the inner resample,
#' named `inner_Row`, are *relative* row indices and do not correspond to the
#' rows in the original data set.
#' @examplesIf rlang::is_installed("ggplot2")
#' library(ggplot2)
#' theme_set(theme_bw())
#'
#' set.seed(4121)
#' cv <- tidy(vfold_cv(mtcars, v = 5))
#' ggplot(cv, aes(x = Fold, y = Row, fill = Data)) +
#' geom_tile() +
#' scale_fill_brewer()
#'
#' set.seed(4121)
#' rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2))
#' ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) +
#' geom_tile() +
#' facet_wrap(~Repeat) +
#' scale_fill_brewer()
#'
#' set.seed(4121)
#' mccv <- tidy(mc_cv(mtcars, times = 5))
#' ggplot(mccv, aes(x = Resample, y = Row, fill = Data)) +
#' geom_tile() +
#' scale_fill_brewer()
#'
#' set.seed(4121)
#' bt <- tidy(bootstraps(mtcars, time = 5))
#' ggplot(bt, aes(x = Resample, y = Row, fill = Data)) +
#' geom_tile() +
#' scale_fill_brewer()
#'
#' dat <- data.frame(day = 1:30)
#' # Resample by week instead of day
#' ts_cv <- rolling_origin(dat,
#' initial = 7, assess = 7,
#' skip = 6, cumulative = FALSE
#' )
#' ts_cv <- tidy(ts_cv)
#' ggplot(ts_cv, aes(x = Resample, y = factor(Row), fill = Data)) +
#' geom_tile() +
#' scale_fill_brewer()
#' @export
tidy.rsplit <- function(x, unique_ind = TRUE, ...) {
if (unique_ind) x$in_id <- unique(x$in_id)
out <- tibble(
Row = c(x$in_id, complement(x)),
Data = rep(
c("Analysis", "Assessment"),
c(length(x$in_id), length(complement(x)))
)
)
out <- dplyr::arrange(.data = out, Data, Row)
out
}
#' @rdname tidy.rsplit
#' @export
tidy.rset <- function(x, ...) {
dots <- list(...)
unique_ind <- dots$unique_ind %||% TRUE
stacked <- purrr::map(x$splits, tidy, unique_ind = unique_ind)
for (i in seq_along(stacked)) {
stacked[[i]]$Resample <- x$id[i]
}
stacked <- dplyr::bind_rows(stacked)
stacked <- dplyr::arrange(.data = stacked, Data, Row)
stacked
}
#' @rdname tidy.rsplit
#' @export
tidy.vfold_cv <- function(x, ...) {
stacked <- purrr::map(x$splits, tidy)
for (i in seq_along(stacked)) {
if (attr(x, "repeats") > 1) {
stacked[[i]]$Repeat <- x$id[i]
stacked[[i]]$Fold <- x$id2[i]
} else {
stacked[[i]]$Fold <- x$id[i]
}
}
stacked <- dplyr::bind_rows(stacked)
stacked <- dplyr::arrange(.data = stacked, Data, Row)
stacked
}
#' @rdname tidy.rsplit
#' @export
tidy.nested_cv <- function(x, ...) {
x$inner_tidy <- purrr::map(x$inner_resamples, tidy_wrap)
inner_tidy <- tidyr::unnest(x, inner_tidy)
class(x) <- class(x)[class(x) != "nested_cv"]
outer_tidy <- tidy(x)
id_cols <- names(outer_tidy)
id_cols <- id_cols[!(id_cols %in% c("Row", "Data"))]
inner_id <- grep("^id", names(inner_tidy))
if (length(inner_id) != length(id_cols)) {
rlang::abort("Cannot merge tidy data sets")
}
names(inner_tidy)[inner_id] <- id_cols
full_join(outer_tidy, inner_tidy, by = id_cols)
}
tidy_wrap <- function(x) {
x <- tidy(x)
names(x) <- paste0("inner_", names(x))
x
}
|