1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#' Bootstrap Sampling
#'
#' A bootstrap sample is a sample that is the same size as the original data
#' set that is made using replacement. This results in analysis samples that
#' have multiple replicates of some of the original rows of the data. The
#' assessment set is defined as the rows of the original data that were not
#' included in the bootstrap sample. This is often referred to as the
#' "out-of-bag" (OOB) sample.
#' @details The argument `apparent` enables the option of an additional
#' "resample" where the analysis and assessment data sets are the same as the
#' original data set. This can be required for some types of analysis of the
#' bootstrap results.
#'
#' @template strata_details
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param times The number of bootstrap samples.
#' @param apparent A logical. Should an extra resample be added where the
#' analysis and holdout subset are the entire data set. This is required for
#' some estimators used by the `summary` function that require the apparent
#' error rate.
#' @export
#' @return A tibble with classes `bootstraps`, `rset`, `tbl_df`, `tbl`, and
#' `data.frame`. The results include a column for the data split objects and a
#' column called `id` that has a character string with the resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' bootstraps(mtcars, times = 2)
#' bootstraps(mtcars, times = 2, apparent = TRUE)
#'
#' library(purrr)
#' library(modeldata)
#' data(wa_churn)
#'
#' set.seed(13)
#' resample1 <- bootstraps(wa_churn, times = 3)
#' map_dbl(
#' resample1$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
#' map_dbl(
#' resample2$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample3 <- bootstraps(wa_churn, strata = tenure, breaks = 6, times = 3)
#' map_dbl(
#' resample3$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#' @export
bootstraps <-
function(data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1,
apparent = FALSE,
...) {
check_dots_empty()
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) strata <- NULL
}
strata_check(strata, data)
split_objs <-
boot_splits(
data = data,
times = times,
strata = strata,
breaks = breaks,
pool = pool
)
if (apparent) {
split_objs <- bind_rows(split_objs, apparent(data))
}
if (!is.null(strata)) names(strata) <- NULL
boot_att <- list(
times = times,
apparent = apparent,
strata = strata,
breaks = breaks,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = boot_att,
subclass = c("bootstraps", "rset")
)
}
# Get the indices of the analysis set from the analysis set (= bootstrap sample)
boot_complement <- function(ind, n) {
list(analysis = ind, assessment = NA)
}
boot_splits <-
function(data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1) {
n <- nrow(data)
if (is.null(strata)) {
indices <- purrr::map(rep(n, times), sample, replace = TRUE)
} else {
stratas <- tibble::tibble(
idx = 1:n,
strata = make_strata(getElement(data, strata),
breaks = breaks,
pool = pool
)
)
stratas <- split_unnamed(stratas, stratas$strata)
stratas <-
purrr::map(
stratas,
strat_sample,
prop = 1,
times = times,
replace = TRUE
) %>%
list_rbind()
indices <- split_unnamed(stratas$idx, stratas$rs_id)
}
indices <- lapply(indices, boot_complement, n = n)
split_objs <-
purrr::map(indices, make_splits, data = data, class = "boot_split")
all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
if (any(all_assessable == 0)) {
rlang::warn(
"Some assessment sets contained zero rows.",
call = rlang::caller_env()
)
}
list(
splits = split_objs,
id = names0(length(split_objs), "Bootstrap")
)
}
#' Group Bootstraps
#'
#' Group bootstrapping creates splits of the data based
#' on some grouping variable (which may have more than a single row
#' associated with it). A common use of this kind of resampling is when you
#' have repeated measures of the same subject.
#' A bootstrap sample is a sample that is the same size as the original data
#' set that is made using replacement. This results in analysis samples that
#' have multiple replicates of some of the original rows of the data. The
#' assessment set is defined as the rows of the original data that were not
#' included in the bootstrap sample. This is often referred to as the
#' "out-of-bag" (OOB) sample.
#' @details The argument `apparent` enables the option of an additional
#' "resample" where the analysis and assessment data sets are the same as the
#' original data set. This can be required for some types of analysis of the
#' bootstrap results.
#'
#' @inheritParams bootstraps
#' @inheritParams make_groups
#' @export
#' @return An tibble with classes `group_bootstraps` `bootstraps`, `rset`,
#' `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data
#' split objects and a column called `id` that has a character string with the
#' resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' set.seed(13)
#' group_bootstraps(ames, Neighborhood, times = 3)
#' group_bootstraps(ames, Neighborhood, times = 3, apparent = TRUE)
#'
#' @export
group_bootstraps <- function(data,
group,
times = 25,
apparent = FALSE,
...,
strata = NULL,
pool = 0.1) {
check_dots_empty()
group <- validate_group({{ group }}, data)
if (!missing(strata)) {
strata <- check_grouped_strata({{ group }}, {{ strata }}, pool, data)
}
split_objs <-
group_boot_splits(
data = data,
group = group,
times = times,
strata = strata,
pool = pool
)
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
if (apparent) {
split_objs <- bind_rows(split_objs, apparent(data))
}
# This is needed for printing checks; strata can't be missing
if (is.null(strata)) strata <- FALSE
boot_att <- list(
times = times,
apparent = apparent,
strata = strata,
pool = pool,
group = group
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = boot_att,
subclass = c("group_bootstraps", "bootstraps", "group_rset", "rset")
)
}
group_boot_splits <- function(data, group, times = 25, strata = NULL, pool = 0.1) {
group <- getElement(data, group)
if (!is.null(strata)) {
strata <- getElement(data, strata)
strata <- as.character(strata)
strata <- make_strata(strata, pool = pool)
}
n <- nrow(data)
indices <- make_groups(
data,
group,
times,
balance = "prop",
prop = 1,
replace = TRUE,
strata = strata
)
indices <- lapply(indices, boot_complement, n = n)
split_objs <- purrr::map(
indices,
make_splits,
data = data,
class = c("group_boot_split", "boot_split")
)
all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
if (any(all_assessable == 0)) {
rlang::warn(
c(
"Some assessment sets contained zero rows.",
i = "Consider using a non-grouped resampling method."
),
call = rlang::caller_env()
)
}
list(
splits = split_objs,
id = names0(length(split_objs), "Bootstrap")
)
}
|