File: initial_validation_split.R

package info (click to toggle)
r-cran-rsample 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,932 kB
  • sloc: sh: 13; makefile: 2
file content (365 lines) | stat: -rw-r--r-- 9,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#' Create an Initial Train/Validation/Test Split
#'
#' `initial_validation_split()` creates a random three-way split of the data
#' into a training set, a validation set, and a testing set.
#' `initial_validation_time_split()` does the same, but instead of a random
#' selection the training, validation, and testing set are in order of the full
#' data set, with the first observations being put into the training set.
#' `group_initial_validation_split()` creates similar random splits of the data
#' based on some grouping variable, so that all data in a "group" are assigned
#' to the same partition.
#' `training()`, `validation()`, and `testing()` can be used to extract the
#' resulting data sets.
#' Use [`validation_set()`] to create an `rset` object for use with functions from
#' the tune package such as `tune::tune_grid()`.
#'
#' @template strata_details
#'
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param prop A length-2 vector of proportions of data to be retained for training and
#' validation data, respectively.
#' @inheritParams rlang::args_dots_empty
#' @param x An object of class `initial_validation_split`.
#'
#' @return An `initial_validation_split` object that can be used with the
#' [training()], [validation()], and [testing()] functions to extract the data
#' in each split.
#'
#' @seealso [validation_set()]
#'
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' set.seed(1353)
#' car_split <- initial_validation_split(mtcars)
#' train_data <- training(car_split)
#' validation_data <- validation(car_split)
#' test_data <- testing(car_split)
#'
#' data(drinks, package = "modeldata")
#' drinks_split <- initial_validation_time_split(drinks)
#' train_data <- training(drinks_split)
#' validation_data <- validation(drinks_split)
#' c(max(train_data$date), min(validation_data$date))
#'
#' data(ames, package = "modeldata")
#' set.seed(1353)
#' ames_split <- group_initial_validation_split(ames, group = Neighborhood)
#' train_data <- training(ames_split)
#' validation_data <- validation(ames_split)
#' test_data <- testing(ames_split)
initial_validation_split <- function(data,
                                     prop = c(0.6, 0.2),
                                     strata = NULL,
                                     breaks = 4,
                                     pool = 0.1,
                                     ...) {
  rlang::check_dots_empty()

  check_prop_3(prop)
  prop_train <- prop[1]
  prop_val <- prop[2] / (1 - prop_train)


  if (!missing(strata)) {
    strata <- tidyselect::vars_select(names(data), !!enquo(strata))
    if (length(strata) == 0) {
      strata <- NULL
    }
  }
  strata_check(strata, data)

  split_train <- mc_cv(
      data = data,
      prop = prop_train,
      strata = {{ strata }},
      breaks = breaks,
      pool = pool,
      times = 1,
      ...
    )
  split_train <- split_train$splits[[1]]
  train_id <- split_train$in_id

  val_and_test <- assessment(split_train)
  val_and_test_id <- complement(split_train)

  split_val <- mc_cv(
    data = val_and_test,
    prop = prop_val,
    strata = {{ strata }},
    breaks = breaks,
    pool = pool / (1 - prop_train),
    times = 1,
    ...
  )
  split_val <- split_val$splits[[1]]
  val_id <- val_and_test_id[split_val$in_id]

  res <- list(
    data = data,
    train_id = train_id,
    val_id = val_id,
    test_id = NA,
    id = "split"
  )

  # include those so that they can be attached to the `rset` later in `validation_set()`
  if (!is.null(strata)) names(strata) <- NULL
  val_att <- list(
    prop = prop,
    strata = strata,
    breaks = breaks,
    pool = pool
  )
  attr(res, "val_att") <- val_att

  class(res) <- c("initial_validation_split", "three_way_split")
  res
}

check_prop_3 <- function(prop, call = rlang::caller_env()) {
  if (!is.numeric(prop)) {
    rlang::abort("`prop` needs to be numeric.", call = call)
  }
  if (any(is.na(prop))) {
    rlang::abort("`prop` cannot contain `NA`.", call = call)
  }
  if (any(is.null(prop))) {
    rlang::abort("`prop` cannot contain `NULL`.", call = call)
  }
  if (length(prop) != 2L) {
    rlang::abort(
      "`prop` needs to contain the proportions for training and validation.",
      call = call
    )
  }
  if (any(!(prop > 0)) | any(!(prop < 1))) {
    rlang::abort("Elements of `prop` need to be in (0, 1).", call = call)
  }
  if (!(sum(prop) > 0 ) | !(sum(prop) < 1) ) {
    rlang::abort(
      "The sum of the proportions in `prop` needs to be in (0, 1).",
      call = call
    )
  }
  invisible(prop)
}

#' @rdname initial_validation_split
#' @export
initial_validation_time_split <- function(data,
                                          prop = c(0.6, 0.2),
                                          ...) {
  rlang::check_dots_empty()

  check_prop_3(prop)
  prop_train <- prop[1]
  prop_val <- prop[2] / (1 - prop_train)

  n_train <- floor(nrow(data) * prop_train)
  n_val <- floor((nrow(data) - n_train) * prop_val)

  train_id <- seq(1, n_train, by = 1)
  val_id <- seq(n_train + 1, n_train + n_val, by = 1)

  res <- list(
    data = data,
    train_id = train_id,
    val_id = val_id,
    test_id = NA,
    id = "split"
  )

  # include those so that they can be attached to the `rset` later in `validation_set()`
  val_att <- list(
    prop = prop
  )
  attr(res, "val_att") <- val_att

  class(res) <- c(
    "initial_validation_time_split",
    "initial_validation_split",
    "three_way_split"
  )
  res
}

#' @inheritParams make_groups
#' @rdname initial_validation_split
#' @export
group_initial_validation_split <- function(data,
                                           group,
                                           prop = c(0.6, 0.2),
                                           ...,
                                           strata = NULL,
                                           pool = 0.1) {
  rlang::check_dots_empty()

  group <- validate_group({{ group }}, data)

  check_prop_3(prop)
  prop_train <- prop[1]
  prop_val <- prop[2] / (1 - prop_train)

  if (!missing(strata)) {
    strata <- tidyselect::vars_select(names(data), !!enquo(strata))
    if (length(strata) == 0) {
      strata <- NULL
    }
  }
  strata_check(strata, data)

  if (missing(strata)) {
    split_train <- group_mc_cv(
      data = data,
      group = {{ group }},
      prop = prop_train,
      times = 1
    )
  } else {
    split_train <- group_mc_cv(
      data = data,
      group = {{ group }},
      prop = prop_train,
      times = 1,
      strata = {{ strata }},
      pool = pool
    )
  }
  split_train <- split_train$splits[[1]]
  train_id <- split_train$in_id

  val_and_test <- assessment(split_train)
  val_and_test_id <- complement(split_train)

  if (missing(strata)) {
    split_val <- group_mc_cv(
      data = val_and_test,
      group = {{ group }},
      prop = prop_val,
      times = 1
    )
  } else {
    split_val <- group_mc_cv(
      data = val_and_test,
      group = {{ group }},
      prop = prop_val,
      times = 1,
      strata = {{ strata }},
      pool = pool
    )
  }
  split_val <- split_val$splits[[1]]
  val_id <- val_and_test_id[split_val$in_id]

  res <- list(
    data = data,
    train_id = train_id,
    val_id = val_id,
    test_id = NA,
    id = "split"
  )

  # include those so that they can be attached to the `rset` later in `validation_set()`
  if (!is.null(strata)) names(strata) <- NULL
  val_att <- list(
    group = group,
    prop = prop,
    strata = strata,
    pool = pool
  )
  attr(res, "val_att") <- val_att

  class(res) <- c("group_initial_validation_split",
                  "initial_validation_split",
                  "three_way_split")
  res
}

#' @export
#' @rdname initial_validation_split
training.initial_validation_split <- function(x, ...) {
  check_dots_empty()
  ind <- sort(x$train_id)
  vctrs::vec_slice(x$data, ind)
}

#' @export
#' @rdname initial_validation_split
testing.initial_validation_split <- function(x, ...) {
  check_dots_empty()
  ind <- -sort(c(x$train_id, x$val_id))
  vctrs::vec_slice(x$data, ind)
}

#' @export
#' @rdname initial_validation_split
validation <- function(x, ...) {
  UseMethod("validation")
}

#' @export
#' @rdname initial_validation_split
validation.default <- function(x, ...) {
  cls <- class(x)
  cli::cli_abort(
    "No method for objects of class{?es}: {cls}"
  )
}

#' @export
#' @rdname initial_validation_split
validation.initial_validation_split <- function(x, ...) {
  check_dots_empty()

  ind <- sort(x$val_id)
  vctrs::vec_slice(x$data, ind)
}


#' @export
#' @keywords internal
analysis.initial_validation_split <- function(x, ...) {
  rlang::abort(
    "The initial validation split does not contain an analysis set.",
    i = "You can access the training data with `training()`."
  )
}

#' @export
#' @keywords internal
assessment.initial_validation_split <- function(x, ...) {
  rlang::abort(
    "The initial validation split does not contain an assessment set.",
    i = "You can access the testing data with `testing()`."
  )
}

#' @export
print.initial_validation_split <- function(x, ...) {

  n_test <- nrow(x$data) - length(x$train_id) - length(x$val_id)
  n_test_char <- paste(n_test)

  cat("<Training/Validation/Testing/Total>\n")
  cat("<",
      length(x$train_id), "/",
      length(x$val_id), "/",
      n_test_char, "/",
      nrow(x$data), ">\n",
      sep = ""
  )
}

#' @export
dim.initial_validation_split <- function(x, ...) {
  n_test <- nrow(x$data) - length(x$train_id) - length(x$val_id)
  c(
    training = length(x$train_id),
    validation = length(x$val_id),
    testing = length(n_test),
    n = nrow(x$data),
    p = ncol(x$data)
  )
}