1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
#' Create an Initial Train/Validation/Test Split
#'
#' `initial_validation_split()` creates a random three-way split of the data
#' into a training set, a validation set, and a testing set.
#' `initial_validation_time_split()` does the same, but instead of a random
#' selection the training, validation, and testing set are in order of the full
#' data set, with the first observations being put into the training set.
#' `group_initial_validation_split()` creates similar random splits of the data
#' based on some grouping variable, so that all data in a "group" are assigned
#' to the same partition.
#' `training()`, `validation()`, and `testing()` can be used to extract the
#' resulting data sets.
#' Use [`validation_set()`] to create an `rset` object for use with functions from
#' the tune package such as `tune::tune_grid()`.
#'
#' @template strata_details
#'
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param prop A length-2 vector of proportions of data to be retained for training and
#' validation data, respectively.
#' @inheritParams rlang::args_dots_empty
#' @param x An object of class `initial_validation_split`.
#'
#' @return An `initial_validation_split` object that can be used with the
#' [training()], [validation()], and [testing()] functions to extract the data
#' in each split.
#'
#' @seealso [validation_set()]
#'
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' set.seed(1353)
#' car_split <- initial_validation_split(mtcars)
#' train_data <- training(car_split)
#' validation_data <- validation(car_split)
#' test_data <- testing(car_split)
#'
#' data(drinks, package = "modeldata")
#' drinks_split <- initial_validation_time_split(drinks)
#' train_data <- training(drinks_split)
#' validation_data <- validation(drinks_split)
#' c(max(train_data$date), min(validation_data$date))
#'
#' data(ames, package = "modeldata")
#' set.seed(1353)
#' ames_split <- group_initial_validation_split(ames, group = Neighborhood)
#' train_data <- training(ames_split)
#' validation_data <- validation(ames_split)
#' test_data <- testing(ames_split)
initial_validation_split <- function(data,
prop = c(0.6, 0.2),
strata = NULL,
breaks = 4,
pool = 0.1,
...) {
rlang::check_dots_empty()
check_prop_3(prop)
prop_train <- prop[1]
prop_val <- prop[2] / (1 - prop_train)
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) {
strata <- NULL
}
}
strata_check(strata, data)
split_train <- mc_cv(
data = data,
prop = prop_train,
strata = {{ strata }},
breaks = breaks,
pool = pool,
times = 1,
...
)
split_train <- split_train$splits[[1]]
train_id <- split_train$in_id
val_and_test <- assessment(split_train)
val_and_test_id <- complement(split_train)
split_val <- mc_cv(
data = val_and_test,
prop = prop_val,
strata = {{ strata }},
breaks = breaks,
pool = pool / (1 - prop_train),
times = 1,
...
)
split_val <- split_val$splits[[1]]
val_id <- val_and_test_id[split_val$in_id]
res <- list(
data = data,
train_id = train_id,
val_id = val_id,
test_id = NA,
id = "split"
)
# include those so that they can be attached to the `rset` later in `validation_set()`
if (!is.null(strata)) names(strata) <- NULL
val_att <- list(
prop = prop,
strata = strata,
breaks = breaks,
pool = pool
)
attr(res, "val_att") <- val_att
class(res) <- c("initial_validation_split", "three_way_split")
res
}
check_prop_3 <- function(prop, call = rlang::caller_env()) {
if (!is.numeric(prop)) {
rlang::abort("`prop` needs to be numeric.", call = call)
}
if (any(is.na(prop))) {
rlang::abort("`prop` cannot contain `NA`.", call = call)
}
if (any(is.null(prop))) {
rlang::abort("`prop` cannot contain `NULL`.", call = call)
}
if (length(prop) != 2L) {
rlang::abort(
"`prop` needs to contain the proportions for training and validation.",
call = call
)
}
if (any(!(prop > 0)) | any(!(prop < 1))) {
rlang::abort("Elements of `prop` need to be in (0, 1).", call = call)
}
if (!(sum(prop) > 0 ) | !(sum(prop) < 1) ) {
rlang::abort(
"The sum of the proportions in `prop` needs to be in (0, 1).",
call = call
)
}
invisible(prop)
}
#' @rdname initial_validation_split
#' @export
initial_validation_time_split <- function(data,
prop = c(0.6, 0.2),
...) {
rlang::check_dots_empty()
check_prop_3(prop)
prop_train <- prop[1]
prop_val <- prop[2] / (1 - prop_train)
n_train <- floor(nrow(data) * prop_train)
n_val <- floor((nrow(data) - n_train) * prop_val)
train_id <- seq(1, n_train, by = 1)
val_id <- seq(n_train + 1, n_train + n_val, by = 1)
res <- list(
data = data,
train_id = train_id,
val_id = val_id,
test_id = NA,
id = "split"
)
# include those so that they can be attached to the `rset` later in `validation_set()`
val_att <- list(
prop = prop
)
attr(res, "val_att") <- val_att
class(res) <- c(
"initial_validation_time_split",
"initial_validation_split",
"three_way_split"
)
res
}
#' @inheritParams make_groups
#' @rdname initial_validation_split
#' @export
group_initial_validation_split <- function(data,
group,
prop = c(0.6, 0.2),
...,
strata = NULL,
pool = 0.1) {
rlang::check_dots_empty()
group <- validate_group({{ group }}, data)
check_prop_3(prop)
prop_train <- prop[1]
prop_val <- prop[2] / (1 - prop_train)
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) {
strata <- NULL
}
}
strata_check(strata, data)
if (missing(strata)) {
split_train <- group_mc_cv(
data = data,
group = {{ group }},
prop = prop_train,
times = 1
)
} else {
split_train <- group_mc_cv(
data = data,
group = {{ group }},
prop = prop_train,
times = 1,
strata = {{ strata }},
pool = pool
)
}
split_train <- split_train$splits[[1]]
train_id <- split_train$in_id
val_and_test <- assessment(split_train)
val_and_test_id <- complement(split_train)
if (missing(strata)) {
split_val <- group_mc_cv(
data = val_and_test,
group = {{ group }},
prop = prop_val,
times = 1
)
} else {
split_val <- group_mc_cv(
data = val_and_test,
group = {{ group }},
prop = prop_val,
times = 1,
strata = {{ strata }},
pool = pool
)
}
split_val <- split_val$splits[[1]]
val_id <- val_and_test_id[split_val$in_id]
res <- list(
data = data,
train_id = train_id,
val_id = val_id,
test_id = NA,
id = "split"
)
# include those so that they can be attached to the `rset` later in `validation_set()`
if (!is.null(strata)) names(strata) <- NULL
val_att <- list(
group = group,
prop = prop,
strata = strata,
pool = pool
)
attr(res, "val_att") <- val_att
class(res) <- c("group_initial_validation_split",
"initial_validation_split",
"three_way_split")
res
}
#' @export
#' @rdname initial_validation_split
training.initial_validation_split <- function(x, ...) {
check_dots_empty()
ind <- sort(x$train_id)
vctrs::vec_slice(x$data, ind)
}
#' @export
#' @rdname initial_validation_split
testing.initial_validation_split <- function(x, ...) {
check_dots_empty()
ind <- -sort(c(x$train_id, x$val_id))
vctrs::vec_slice(x$data, ind)
}
#' @export
#' @rdname initial_validation_split
validation <- function(x, ...) {
UseMethod("validation")
}
#' @export
#' @rdname initial_validation_split
validation.default <- function(x, ...) {
cls <- class(x)
cli::cli_abort(
"No method for objects of class{?es}: {cls}"
)
}
#' @export
#' @rdname initial_validation_split
validation.initial_validation_split <- function(x, ...) {
check_dots_empty()
ind <- sort(x$val_id)
vctrs::vec_slice(x$data, ind)
}
#' @export
#' @keywords internal
analysis.initial_validation_split <- function(x, ...) {
rlang::abort(
"The initial validation split does not contain an analysis set.",
i = "You can access the training data with `training()`."
)
}
#' @export
#' @keywords internal
assessment.initial_validation_split <- function(x, ...) {
rlang::abort(
"The initial validation split does not contain an assessment set.",
i = "You can access the testing data with `testing()`."
)
}
#' @export
print.initial_validation_split <- function(x, ...) {
n_test <- nrow(x$data) - length(x$train_id) - length(x$val_id)
n_test_char <- paste(n_test)
cat("<Training/Validation/Testing/Total>\n")
cat("<",
length(x$train_id), "/",
length(x$val_id), "/",
n_test_char, "/",
nrow(x$data), ">\n",
sep = ""
)
}
#' @export
dim.initial_validation_split <- function(x, ...) {
n_test <- nrow(x$data) - length(x$train_id) - length(x$val_id)
c(
training = length(x$train_id),
validation = length(x$val_id),
testing = length(n_test),
n = nrow(x$data),
p = ncol(x$data)
)
}
|