1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#' Constructors for split objects
#' @export
#' @examples
#' df <- data.frame(
#' year = 1900:1999,
#' value = 10 + 8*1900:1999 + runif(100L, 0, 100)
#' )
#' split_from_indices <- make_splits(
#' x = list(analysis = which(df$year <= 1980),
#' assessment = which(df$year > 1980)),
#' data = df
#' )
#' split_from_data_frame <- make_splits(
#' x = df[df$year <= 1980,],
#' assessment = df[df$year > 1980,]
#' )
#' identical(split_from_indices, split_from_data_frame)
make_splits <- function(x, ...) {
UseMethod("make_splits")
}
#' @rdname make_splits
#' @param x A list of integers with names "analysis" and "assessment", or a
#' data frame of analysis or training data.
#' @export
make_splits.default <- function(x, ...) {
rlang::abort("There is no method available to make an rsplit from `x`.")
}
#' @rdname make_splits
#' @param data A data frame.
#' @param class An optional class to give the object.
#' @param ... Not currently used.
#' @export
make_splits.list <- function(x, data, class = NULL, ...) {
rlang::check_dots_empty()
res <- rsplit(data, x$analysis, x$assessment)
if (!is.null(class)) {
res <- add_class(res, class)
}
res
}
#' @rdname make_splits
#' @param assessment A data frame of assessment or testing data, which can be empty.
#' @export
make_splits.data.frame <- function(x, assessment, ...) {
rlang::check_dots_empty()
if (nrow(x) == 0) {
rlang::abort("The analysis set must contain at least one row.")
}
ind_analysis <- seq_len(nrow(x))
if (nrow(assessment) == 0) {
ind_assessment <- integer()
} else {
if (!identical(colnames(x), colnames(assessment))) {
rlang::abort("The analysis and assessment sets must have the same columns.")
}
ind_assessment <- nrow(x) + seq_len(nrow(assessment))
}
data <- bind_rows(x, assessment)
ind <- list(
analysis = ind_analysis,
assessment = ind_assessment
)
make_splits(ind, data)
}
merge_lists <- function(a, b) list(analysis = a, assessment = b)
dim_rset <- function(x, ...) {
check_dots_empty()
dims <- purrr::map(x$splits, dim)
dims <- do.call("rbind", dims)
dims <- tibble::as_tibble(dims)
id_cols <- grep("(^id$)|(^id[1-9]$)", colnames(x), value = TRUE)
for (i in seq_along(id_cols)) {
dims[id_cols[i]] <- getElement(x, id_cols[i])
}
dims
}
names0 <- function(num, prefix = "x") {
if (num == 0L) {
return(character())
}
ind <- format(1:num)
ind <- gsub(" ", "0", ind)
paste0(prefix, ind)
}
add_class <- function(x, cls) {
class(x) <- c(cls, class(x))
x
}
strata_check <- function(strata, data) {
if (!is.null(strata)) {
if (!is.character(strata) | length(strata) != 1) {
rlang::abort("`strata` should be a single name or character value.")
}
if (inherits(data[, strata], "Surv")) {
rlang::abort("`strata` cannot be a `Surv` object. Use the time or event variable directly.")
}
if (!(strata %in% names(data))) {
rlang::abort(strata, " is not in `data`.")
}
}
invisible(NULL)
}
split_unnamed <- function(x, f) {
out <- split(x, f)
unname(out)
}
#' Obtain a identifier for the resamples
#'
#' This function returns a hash (or NA) for an attribute that is created when
#' the `rset` was initially constructed. This can be used to compare with other
#' resampling objects to see if they are the same.
#' @param x An `rset` or `tune_results` object.
#' @param ... Not currently used.
#' @return A character value or `NA_character_` if the object was created prior
#' to `rsample` version 0.1.0.
#' @rdname get_fingerprint
#' @aliases .get_fingerprint
#' @examples
#' set.seed(1)
#' .get_fingerprint(vfold_cv(mtcars))
#'
#' set.seed(1)
#' .get_fingerprint(vfold_cv(mtcars))
#'
#' set.seed(2)
#' .get_fingerprint(vfold_cv(mtcars))
#'
#' set.seed(1)
#' .get_fingerprint(vfold_cv(mtcars, repeats = 2))
#' @export
.get_fingerprint <- function(x, ...) {
UseMethod(".get_fingerprint")
}
#' @export
#' @rdname get_fingerprint
.get_fingerprint.default <- function(x, ...) {
cls <- paste0("'", class(x), "'", collapse = ", ")
rlang::abort(
paste("No `.get_fingerprint()` method for this class(es)", cls)
)
}
#' @export
#' @rdname get_fingerprint
.get_fingerprint.rset <- function(x, ...) {
check_dots_empty()
att <- attributes(x)
if (any(names(att) == "fingerprint")) {
res <- att$fingerprint
} else {
res <- NA_character_
}
res
}
#' Reverse the analysis and assessment sets
#'
#' This functions "swaps" the analysis and assessment sets of either a single
#' `rsplit` or all `rsplit`s in the `splits` column of an `rset` object.
#'
#' @param x An `rset` or `rsplit` object.
#' @param ... Not currently used.
#'
#' @return An object of the same class as `x`
#'
#' @examples
#' set.seed(123)
#' starting_splits <- vfold_cv(mtcars, v = 3)
#' reverse_splits(starting_splits)
#' reverse_splits(starting_splits$splits[[1]])
#'
#' @rdname reverse_splits
#' @export
reverse_splits <- function(x, ...) {
UseMethod("reverse_splits")
}
#' @rdname reverse_splits
#' @export
reverse_splits.default <- function(x, ...) {
rlang::abort(
"`x` must be either an `rsplit` or an `rset` object"
)
}
#' @rdname reverse_splits
#' @export
reverse_splits.permutations <- function(x, ...) {
rlang::abort(
"Permutations cannot have their splits reversed"
)
}
#' @rdname reverse_splits
#' @export
reverse_splits.perm_split <- reverse_splits.permutations
#' @rdname reverse_splits
#' @export
reverse_splits.rsplit <- function(x, ...) {
rlang::check_dots_empty()
out_splits <- list(
analysis = as.integer(x, data = "assessment"),
assessment = as.integer(x, data = "analysis")
)
out_splits <- make_splits(out_splits, x$data)
class(out_splits) <- class(x)
out_splits
}
#' @rdname reverse_splits
#' @export
reverse_splits.rset <- function(x, ...) {
rlang::check_dots_empty()
x$splits <- purrr::map(x$splits, reverse_splits)
x
}
#' "Reshuffle" an rset to re-generate a new rset with the same parameters
#'
#' This function re-generates an rset object, using the same arguments used
#' to generate the original.
#'
#' @param rset The `rset` object to be reshuffled
#'
#' @return An rset of the same class as `rset`.
#'
#' @examples
#' set.seed(123)
#' (starting_splits <- group_vfold_cv(mtcars, cyl, v = 3))
#' reshuffle_rset(starting_splits)
#'
#' @export
reshuffle_rset <- function(rset) {
if (!inherits(rset, "rset")) {
rlang::abort("`rset` must be an rset object")
}
if (inherits(rset, "manual_rset")) {
rlang::abort("`manual_rset` objects cannot be reshuffled")
}
# non-random classes is defined below
if (any(non_random_classes %in% class(rset))) {
cls <- class(rset)[[1]]
rlang::warn(
glue::glue("`reshuffle_rset()` will return an identical rset when called on {cls} objects")
)
if ("validation_set" %in% class(rset)) {
return(rset)
}
}
arguments <- attributes(rset)
useful_arguments <- names(formals(arguments$class[[1]]))
useful_arguments <- arguments[useful_arguments]
useful_arguments <- useful_arguments[!is.na(names(useful_arguments))]
if (identical(useful_arguments$strata, FALSE)) {
useful_arguments$strata <- NULL
} else if (identical(useful_arguments$strata, TRUE)) {
rlang::abort(
"Cannot reshuffle this rset (`attr(rset, 'strata')` is `TRUE`, not a column identifier)",
i = "If the original object was created with an older version of rsample, try recreating it with the newest version of the package"
)
}
do.call(
arguments$class[[1]],
c(list(data = rset$splits[[1]]$data), useful_arguments)
)
}
non_random_classes <- c(
"sliding_index",
"sliding_period",
"sliding_window",
"rolling_origin",
"validation_time_split",
"validation_set"
)
#' Retrieve individual rsplits objects from an rset
#'
#' @param x The `rset` object to retrieve an rsplit from.
#' @param index An integer indicating which rsplit to retrieve: `1` for the
#' rsplit in the first row of the rset, `2` for the second, and so on.
#' @param ... Not currently used.
#'
#' @return The rsplit object in row `index` of `rset`
#'
#' @examples
#' set.seed(123)
#' (starting_splits <- group_vfold_cv(mtcars, cyl, v = 3))
#' get_rsplit(starting_splits, 1)
#'
#' @rdname get_rsplit
#' @export
get_rsplit <- function(x, index, ...) {
UseMethod("get_rsplit")
}
#' @rdname get_rsplit
#' @export
get_rsplit.rset <- function(x, index, ...) {
rlang::check_dots_empty()
n_rows <- nrow(x)
acceptable_index <- length(index) == 1 &&
rlang::is_integerish(index) &&
index > 0 &&
index <= n_rows
if (!acceptable_index) {
msg <- ifelse(
length(index) != 1,
glue::glue("Index was of length {length(index)}."),
glue::glue("A value of {index} was provided.")
)
rlang::abort(
c(
glue::glue("`index` must be a length-1 integer between 1 and {n_rows}."),
x = msg
)
)
}
x$splits[[index]]
}
#' @rdname get_rsplit
#' @export
get_rsplit.default <- function(x, index, ...) {
cls <- paste0("'", class(x), "'", collapse = ", ")
rlang::abort(
paste("No `get_rsplit()` method for this class(es)", cls)
)
}
|