File: tidy.R

package info (click to toggle)
r-cran-rsample 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,932 kB
  • sloc: sh: 13; makefile: 2
file content (132 lines) | stat: -rw-r--r-- 4,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#' Tidy Resampling Object
#'
#' The `tidy` function from the \pkg{broom} package can be used on `rset` and
#'  `rsplit` objects to generate tibbles with which rows are in the analysis and
#'  assessment sets.
#' @param x A  `rset` or  `rsplit` object
#' @param unique_ind Should unique row identifiers be returned? For example,
#'  if `FALSE` then bootstrapping results will include multiple rows in the
#'  sample for the same row in the original data.
#' @inheritParams rlang::args_dots_empty
#' @return A tibble with columns `Row` and `Data`. The latter has possible
#'  values "Analysis" or "Assessment". For `rset` inputs, identification columns
#'  are also returned but their names and values depend on the type of
#'  resampling. `vfold_cv` contains a column "Fold" and, if repeats are used,
#'  another called "Repeats". `bootstraps` and `mc_cv` use the column
#'  "Resample".
#' @details Note that for nested resampling, the rows of the inner resample,
#'  named `inner_Row`, are *relative* row indices and do not correspond to the
#'  rows in the original data set.
#' @examplesIf rlang::is_installed("ggplot2")
#' library(ggplot2)
#' theme_set(theme_bw())
#'
#' set.seed(4121)
#' cv <- tidy(vfold_cv(mtcars, v = 5))
#' ggplot(cv, aes(x = Fold, y = Row, fill = Data)) +
#'   geom_tile() +
#'   scale_fill_brewer()
#'
#' set.seed(4121)
#' rcv <- tidy(vfold_cv(mtcars, v = 5, repeats = 2))
#' ggplot(rcv, aes(x = Fold, y = Row, fill = Data)) +
#'   geom_tile() +
#'   facet_wrap(~Repeat) +
#'   scale_fill_brewer()
#'
#' set.seed(4121)
#' mccv <- tidy(mc_cv(mtcars, times = 5))
#' ggplot(mccv, aes(x = Resample, y = Row, fill = Data)) +
#'   geom_tile() +
#'   scale_fill_brewer()
#'
#' set.seed(4121)
#' bt <- tidy(bootstraps(mtcars, time = 5))
#' ggplot(bt, aes(x = Resample, y = Row, fill = Data)) +
#'   geom_tile() +
#'   scale_fill_brewer()
#'
#' dat <- data.frame(day = 1:30)
#' # Resample by week instead of day
#' ts_cv <- rolling_origin(dat,
#'   initial = 7, assess = 7,
#'   skip = 6, cumulative = FALSE
#' )
#' ts_cv <- tidy(ts_cv)
#' ggplot(ts_cv, aes(x = Resample, y = factor(Row), fill = Data)) +
#'   geom_tile() +
#'   scale_fill_brewer()
#' @export
tidy.rsplit <- function(x, unique_ind = TRUE, ...) {
  check_dots_empty()
  if (unique_ind) x$in_id <- unique(x$in_id)
  out <- tibble(
    Row = c(x$in_id, complement(x)),
    Data = rep(
      c("Analysis", "Assessment"),
      c(length(x$in_id), length(complement(x)))
    )
  )
  out <- dplyr::arrange(.data = out, Data, Row)
  out
}

#' @rdname tidy.rsplit
#' @export
tidy.rset <- function(x, unique_ind = TRUE, ...) {
  check_dots_empty()
  stacked <- purrr::map(x$splits, tidy, unique_ind = unique_ind)
  for (i in seq_along(stacked)) {
    stacked[[i]]$Resample <- x$id[i]
  }
  stacked <- dplyr::bind_rows(stacked)
  stacked <- dplyr::arrange(.data = stacked, Data, Row)
  stacked
}

#' @rdname tidy.rsplit
#' @export
tidy.vfold_cv <- function(x, ...) {
  check_dots_empty()
  stacked <- purrr::map(x$splits, tidy)
  for (i in seq_along(stacked)) {
    if (attr(x, "repeats") > 1) {
      stacked[[i]]$Repeat <- x$id[i]
      stacked[[i]]$Fold <- x$id2[i]
    } else {
      stacked[[i]]$Fold <- x$id[i]
    }
  }
  stacked <- dplyr::bind_rows(stacked)
  stacked <- dplyr::arrange(.data = stacked, Data, Row)
  stacked
}

#' @rdname tidy.rsplit
#' @export
tidy.nested_cv <- function(x, unique_ind = TRUE, ...) {
  check_dots_empty()
  x$inner_tidy <- purrr::map(
    x$inner_resamples,
    tidy_wrap,
    unique_ind = unique_ind
  )
  inner_tidy <- tidyr::unnest(x, inner_tidy)
  class(x) <- class(x)[class(x) != "nested_cv"]
  outer_tidy <- tidy(x, unique_ind = unique_ind)
  id_cols <- names(outer_tidy)
  id_cols <- id_cols[!(id_cols %in% c("Row", "Data"))]

  inner_id <- grep("^id", names(inner_tidy))
  if (length(inner_id) != length(id_cols)) {
    rlang::abort("Cannot merge tidy data sets")
  }
  names(inner_tidy)[inner_id] <- id_cols
  full_join(outer_tidy, inner_tidy, by = id_cols)
}

tidy_wrap <- function(x, unique_ind = TRUE) {
  x <- tidy(x, unique_ind = unique_ind)
  names(x) <- paste0("inner_", names(x))
  x
}