1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#' Create a Validation Set
#'
#' @description
#' `r lifecycle::badge('deprecated')`
#'
#' This function is deprecated because it's part of an approach to constructing
#' a training, validation, and testing set by doing a sequence of two binary
#' splits: testing / not-testing (with [initial_split()] or one of its variants)
#' and then not-testing split into training/validation with `validation_split()`.
#' Instead, now use [initial_validation_split()] or one if its variants to
#' construct the three sets via one 3-way split.
#'
#' `validation_split()` takes a single random sample (without replacement) of
#' the original data set to be used for analysis. All other data points are
#' added to the assessment set (to be used as the validation set).
#' `validation_time_split()` does the same, but takes the _first_ `prop` samples
#' for training, instead of a random selection.
#' `group_validation_split()` creates splits of the data based
#' on some grouping variable, so that all data in a "group" is assigned to
#' the same split.
#'
#' Note that the input `data` to `validation_split()`, `validation_time_split()`,
#' and `group_validation_split()` should _not_ contain the testing data. To
#' create a three-way split directly of the entire data set, use
#' [initial_validation_split()].
#'
#' @template strata_details
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param prop The proportion of data to be retained for modeling/analysis.
#' @export
#' @return An tibble with classes `validation_split`, `rset`, `tbl_df`, `tbl`,
#' and `data.frame`. The results include a column for the data split objects
#' and a column called `id` that has a character string with the resample
#' identifier.
#'
#' @seealso [initial_validation_split()], [group_initial_validation_split()],
#' [validation_set()]
#'
#' @keywords internal
#' @examplesIf rlang::is_installed("modeldata")
#' cars_split <- initial_split(mtcars)
#' cars_not_testing <- training(cars_split)
#' validation_split(cars_not_testing, prop = .9)
#' group_validation_split(cars_not_testing, cyl)
#'
#' data(drinks, package = "modeldata")
#' validation_time_split(drinks[1:200,])
#'
#' # Alternative
#' cars_split_3 <- initial_validation_split(mtcars)
#' validation_set(cars_split_3)
validation_split <- function(data, prop = 3 / 4,
strata = NULL, breaks = 4, pool = 0.1, ...) {
lifecycle::deprecate_soft(
"1.2.0",
"validation_split()",
"initial_validation_split()"
)
check_dots_empty()
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) {
strata <- NULL
}
}
strata_check(strata, data)
split_objs <-
mc_splits(
data = data,
prop = prop,
times = 1,
strata = strata,
breaks = breaks,
pool = pool
)
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
class(split_objs$splits[[1]]) <- c("val_split", "rsplit")
if (!is.null(strata)) names(strata) <- NULL
val_att <- list(
prop = prop,
strata = strata,
breaks = breaks,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = "validation",
attrib = val_att,
subclass = c("validation_split", "rset")
)
}
#' @rdname validation_split
#' @inheritParams vfold_cv
#' @inheritParams initial_time_split
#' @export
validation_time_split <- function(data, prop = 3 / 4, lag = 0, ...) {
lifecycle::deprecate_soft(
"1.2.0",
"validation_time_split()",
"initial_validation_time_split()"
)
check_dots_empty()
if (!is.numeric(prop) | prop >= 1 | prop <= 0) {
rlang::abort("`prop` must be a number on (0, 1).")
}
if (!is.numeric(lag) | !(lag %% 1 == 0)) {
rlang::abort("`lag` must be a whole number.")
}
n_train <- floor(nrow(data) * prop)
if (lag > n_train) {
rlang::abort("`lag` must be less than or equal to the number of training observations.")
}
split <- rsplit(data, 1:n_train, (n_train + 1 - lag):nrow(data))
class(split) <- c("val_time_split", "val_split", "rsplit")
splits <- list(split)
val_att <- list(prop = prop, strata = FALSE)
new_rset(
splits = splits,
ids = "validation",
attrib = val_att,
subclass = c("validation_time_split", "validation_split", "rset")
)
}
#' @rdname validation_split
#' @inheritParams group_initial_split
#' @export
group_validation_split <- function(data, group, prop = 3 / 4, ..., strata = NULL, pool = 0.1) {
lifecycle::deprecate_soft(
"1.2.0",
"group_validation_split()",
"group_initial_validation_split()"
)
check_dots_empty()
group <- validate_group({{ group }}, data)
if (!missing(strata)) {
strata <- check_grouped_strata({{ group }}, {{ strata }}, pool, data)
}
split_objs <-
group_mc_splits(
data = data,
group = {{ group }},
prop = prop,
times = 1,
strata = {{ strata }},
pool = pool
)
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
class(split_objs$splits[[1]]) <- c("group_val_split", "val_split", "rsplit")
# This is needed for printing -- strata cannot be missing
if (is.null(strata)) strata <- FALSE
val_att <- list(
prop = prop,
group = group,
strata = strata,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = "validation",
attrib = val_att,
subclass = c("group_validation_split", "validation_split", "group_rset", "rset")
)
}
|