1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
#' Parallel execution of a function over a list on the Slurm cluster
#'
#' Use \code{slurm_map} to compute function over a list
#' in parallel, spread across multiple nodes of a Slurm cluster,
#' with similar syntax to \code{lapply}.
#'
#' This function creates a temporary folder ("_rslurm_[jobname]") in the current
#' directory, holding .RData and .RDS data files, the R script to run and the Bash
#' submission script generated for the Slurm job.
#'
#' The set of input parameters is divided in equal chunks sent to each node, and
#' \code{f} is evaluated in parallel within each node using functions from the
#' \code{parallel} R package. The names of any other R objects (besides
#' \code{x}) that \code{f} needs to access should be included in
#' \code{global_objects} or passed as additional arguments through \code{...}.
#'
#' Use \code{slurm_options} to set any option recognized by \code{sbatch}, e.g.
#' \code{slurm_options = list(time = "1:00:00", share = TRUE)}.
#' See \url{http://slurm.schedmd.com/sbatch.html} for details on possible options.
#' Note that full names must be used (e.g. "time" rather than "t") and that flags
#' (such as "share") must be specified as TRUE. The "array", "job-name", "nodes",
#' "cpus-per-task" and "output" options are already determined by
#' \code{slurm_map} and should not be manually set.
#'
#' When processing the computation job, the Slurm cluster will output two types
#' of files in the temporary folder: those containing the return values of the
#' function for each subset of parameters ("results_[node_id].RDS") and those
#' containing any console or error output produced by R on each node
#' ("slurm_[node_id].out").
#'
#' If \code{submit = TRUE}, the job is sent to the cluster and a confirmation
#' message (or error) is output to the console. If \code{submit = FALSE},
#' a message indicates the location of the saved data and script files; the
#' job can be submitted manually by running the shell command
#' \code{sbatch submit.sh} from that directory.
#'
#' After sending the job to the Slurm cluster, \code{slurm_map} returns a
#' \code{slurm_job} object which can be used to cancel the job, get the job
#' status or output, and delete the temporary files associated with it. See
#' the description of the related functions for more details.
#'
#' @param x A list to apply \code{f} to. Each
#' element of \code{x} corresponds to a separate function call.
#' @param f A function that accepts one element of \code{x} as its first argument,
#' and may return any type of R object.
#' @param ... Additional arguments to \code{f}. These arguments do not vary
#' with each call to \code{f}.
#' @param jobname The name of the Slurm job; if \code{NA}, it is assigned a
#' random name of the form "slr####".
#' @param nodes The (maximum) number of cluster nodes to spread the calculation
#' over. \code{slurm_map} automatically divides \code{x} in chunks of
#' approximately equal size to send to each node. Less nodes are allocated if
#' the parameter set is too small to use all CPUs on the requested nodes.
#' @param cpus_per_node The number of CPUs requested per node. This argument is
#' mapped to the Slurm parameter \code{cpus-per-task}.
#' @param processes_per_node The number of logical CPUs to utilize per node,
#' i.e. how many processes to run in parallel per node. This can exceed
#' \code{cpus_per_node} for nodes which support hyperthreading. Defaults to
#' \code{processes_per_node = cpus_per_node}.
#' @param preschedule_cores Corresponds to the \code{mc.preschedule} argument of
#' \code{parallel::mclapply}. Defaults to \code{TRUE}. If \code{TRUE}, the
#' elements of \code{x} are assigned to cores before computation.
#' If \code{FALSE}, each element of \code{x} is executed by the next available core.
#' Setting \code{FALSE} may be faster if
#' different elements of \code{x} result in very variable completion time for
#' jobs.
#' @param job_array_task_limit The maximum number of job array tasks to run at
#' the same time. Defaults to \code{NULL} (no limit).
#' @param global_objects A character vector containing the name of R objects to be
#' saved in a .RData file and loaded on each cluster node prior to calling
#' \code{f}.
#' @param pkgs A character vector containing the names of packages that must
#' be loaded on each cluster node. By default, it includes all packages
#' loaded by the user when \code{slurm_map} is called.
#' @param libPaths A character vector describing the location of additional R
#' library trees to search through, or NULL. The default value of NULL
#' corresponds to libraries returned by \code{.libPaths()} on a cluster node.
#' Non-existent library trees are silently ignored.
#' @param rscript_path The location of the Rscript command. If not specified,
#' defaults to the location of Rscript within the R installation being run.
#' @param r_template The path to the template file for the R script run on each node.
#' If NULL, uses the default template "rslurm/templates/slurm_run_R.txt".
#' @param sh_template The path to the template file for the sbatch submission script.
#' If NULL, uses the default template "rslurm/templates/submit_sh.txt".
#' @param slurm_options A named list of options recognized by \code{sbatch}; see
#' Details below for more information.
#' @param submit Whether or not to submit the job to the cluster with
#' \code{sbatch}; see Details below for more information.
#' @return A \code{slurm_job} object containing the \code{jobname} and the
#' number of \code{nodes} effectively used.
#' @seealso \code{\link{slurm_call}} to evaluate a single function call.
#' @seealso \code{\link{slurm_apply}} to evaluate a function row-wise over a
#' data frame of parameters.
#' @seealso \code{\link{cancel_slurm}}, \code{\link{cleanup_files}},
#' \code{\link{get_slurm_out}} and \code{\link{get_job_status}}
#' which use the output of this function.
#' @examples
#' \dontrun{
#' sjob <- slurm_map(func, list)
#' get_job_status(sjob) # Prints console/error output once job is completed.
#' func_result <- get_slurm_out(sjob, "table") # Loads output data into R.
#' cleanup_files(sjob)
#' }
#' @export
slurm_map <- function(x, f, ..., jobname = NA, nodes = 2,
cpus_per_node = 2, processes_per_node = cpus_per_node,
preschedule_cores = TRUE, job_array_task_limit = NULL, global_objects = NULL,
pkgs = rev(.packages()), libPaths = NULL,
rscript_path = NULL, r_template = NULL, sh_template = NULL,
slurm_options = list(), submit = TRUE) {
# Check inputs
if (!is.list(x)) {
stop("first argument to slurm_map should be a list")
}
if (!is.function(f)) {
stop("second argument to slurm_map should be a function")
}
if (!is.numeric(nodes) || length(nodes) != 1) {
stop("nodes should be a single number")
}
if (!is.numeric(cpus_per_node) || length(cpus_per_node) != 1) {
stop("cpus_per_node should be a single number")
}
# Default templates
if(is.null(r_template)) {
r_template <- system.file("templates/slurm_map_R.txt", package = "rslurm")
}
if(is.null(sh_template)) {
sh_template <- system.file("templates/submit_sh.txt", package = "rslurm")
}
jobname <- make_jobname(jobname)
# Create temp folder
tmpdir <- paste0("_rslurm_", jobname)
dir.create(tmpdir, showWarnings = FALSE)
# Unpack additional arguments
more_args <- list(...)
saveRDS(x, file = file.path(tmpdir, "x.RDS"))
saveRDS(f, file = file.path(tmpdir, "f.RDS"))
saveRDS(more_args, file = file.path(tmpdir, "more_args.RDS"))
if (!is.null(global_objects)) {
save(list = global_objects,
file = file.path(tmpdir, "add_objects.RData"),
envir = environment(f))
}
# Get chunk size (nb. of list elements per node)
# Special case if less list elements than CPUs in cluster
if (length(x) < cpus_per_node * nodes) {
nchunk <- cpus_per_node
} else {
nchunk <- ceiling(length(x) / nodes)
}
# Re-adjust number of nodes (only matters for small sets)
nodes <- ceiling(length(x) / nchunk)
# Create a R script to run function in parallel on each node
template_r <- readLines(r_template)
script_r <- whisker::whisker.render(template_r,
list(pkgs = pkgs,
add_obj = !is.null(global_objects),
nchunk = nchunk,
cpus_per_node = cpus_per_node,
processes_per_node = processes_per_node,
preschedule_cores = preschedule_cores,
libPaths = libPaths))
writeLines(script_r, file.path(tmpdir, "slurm_run.R"))
# Create submission bash script
template_sh <- readLines(sh_template)
slurm_options <- format_option_list(slurm_options)
if (is.null(rscript_path)){
rscript_path <- file.path(R.home("bin"), "Rscript")
}
script_sh <- whisker::whisker.render(template_sh,
list(max_node = nodes - 1,
job_array_task_limit = ifelse(is.null(job_array_task_limit), "", paste0("%", job_array_task_limit)),
cpus_per_node = cpus_per_node,
jobname = jobname,
flags = slurm_options$flags,
options = slurm_options$options,
rscript = rscript_path))
writeLines(script_sh, file.path(tmpdir, "submit.sh"))
# Submit job to Slurm if applicable
if (submit && system('squeue', ignore.stdout = TRUE)) {
submit <- FALSE
cat("Cannot submit; no Slurm workload manager found\n")
}
if (submit) {
jobid <- submit_slurm_job(tmpdir)
} else {
jobid <- NA
cat(paste("Submission scripts output in directory", tmpdir,"\n"))
}
# Return 'slurm_job' object
slurm_job(jobname, jobid, nodes)
}
|