SOLNP USERS’ GUIDE

—A Nonlinear Optimization Program in MATLAB

By

Yinyu Ye

Department of Management Sciences
College of Business Administration
University of Iowa

Towa City, Iowa 52242

August 1989

2. Table of Contents

Section

1

2

3

4
4.1
4.2
4.3
4.4
4.5

5
5.1
5.2
5.3
5.4
5.5
5.6

6

7

Title
Getting Started
SOLNP Algorithm
SOLNP Command Syntax
Running SOLNP
Function File
Inputs and Outputs
Parameter Specifications
Result Analysis
Restart SOLNP
Benchmark Examples
POWELL
WRIGHT4
WRIGHT9
BOX
ENTROPY
ALKYLA
SOLNP Diagnostics

References

Page

NN o e W

oo

10
10
11
12
13
14
15
17
19

1. Getting Started

This manual is a guide to solving various nonlinear optimization problems us-
ing a MATLAB optimization module. You will need a working knowledge of the
MATLAB program language. You should feel comfortable with the following:

* Creating/Editing Text Files
* MATLAB Commands

* Saving and Loading Data

* Plotting.

Once familiar with MATLAB basics and SOLNP syntax, you should also review
the benchmark examples in Section 5. Each example includes the following:

* Problem Formula
* Function Files
* Syntax Options

* Running Results.

2. SOLNP Algorithm

The SOLNP module in MATLAB solves the general nonlinear programming
(NP) problem in the form
(NP) minimize f(x)
subject to g(z) =0
Ih < h(z) <up
I, <z <u,.

where x € R", f(z) : R* — R, g(z) : R® — R™*, h(x) : R™ — R™, I}, up €
R™2 and I, < up, and l;, u, € R™ and [, < u,. In general, f, g and h are any
nonlinear smooth functions that may be specified and computed in MATLAB.

By adding slacks to the inequality constraints, the SOLNP algorithm converts
the problem into
minimize f(x)
subject to g(z) =0
I, <z <u,.

The kth major iteration of SOLNP solves a linearly constrained optimization
problem with an augmented Lagrangian objective function (Robinson [1]):
minimize f(z) — y*g(x) + (p/2)|lg()|]?
(1) subject to Jk(x — 2F) = —g(2¥)
I, <x < ug.

where J* is a numerical approximation to the Jacobian

Jk = @m.

ox

and y* is the vector of Lagrange multipliers at the kth major iteration (y° = 0
by default). Within the major iteration, the first step is to check to see if z¥ is
feasible for the linear equality constraints of (1). If it is not, an interior linear
programming (LP) Phase 1 procedure is called to find an interior feasible (or near-
feasible) solution.

Next, sequential quadratic programming (QP) is implemented to solve the lin-
early constrained problem (1), i.e., we calculate the gradient vector g and update
the Hessian matrix H, using Broyden-Fletcher-Goldfarb-Shanno’s technique, for the
augmented Lagrangian objective function, and then we solve a quadratic problem

minimize (1/2)(z — 2%)TH(x — 2%) + g7 (x — 2¥)
(2) subject to Jk(x — 2F) = —g(z%)
I, <x < ug.

Since there is no need to obtain highly accurate solution of (2), we use the interior
QP algorithm to reach an approximate solution, which usually takes few steps. We
refer to Ye [3] for technical details of an interior QP algorithm.

If the QP solution is both feasible and optimal for the linearly constrained
problem (1), SOLNP starts the (k + 1)th major iteration with z¥*1 as the optimal
solution and y**! as the optimal multiplier of the last QP problem during the kth
major iteration; otherwise, it updates the gradient g and the Hessian H, and solves
another QP problem that is referred as the minor iteration. Both major and minor
processes repeat until the optimal solution is found or the user-specified maximum
number of iterations is reached.

3. SOLNP Command Syntax
The complete syntax of the SOLNP command is:

[, 0h,y, h,ic] = solnp(zxb,icb, op,y0, h0)
Input

xzzxb: include the column vector of initial variable values (guesses) 0, or lower and
upper variable bounds [l,u], or all of them [z0,l;,u.]. If only 20 issued, we
assume that there are no bounds for xz; if [I;,u,] is issued, we assume that the
initial value of z is 0 = (I + uz)/2. We also require that

I, <20 < u,.

ich: include the column vectors of lower and upper bounds [ly, up], or [i0, 1y, up],
where [, is the column vector of lower bounds, uj is the column vector of upper
bounds, and 40 is the column vector of the estimate values of the inequality con-
straints at the optimal solution. <0 should be strictly inside of the lower and upper
bounds. If no inequality constraint is present, enter a zero in the zcb position.

op: This is optional. op is a vector specifying the algorithm parameters defined as
[p, maj, min, d, €]
where

p the penalty parameter in the augmented Lagrangian objective function, default
= 1.

maj the maximum number of major iterations, default = 10

5

men the maximum number of minor iterations, default = 10
d the perturbation parameter for numerical gradient calculation, default = 10~°
¢ the relative tolerance on optimality and feasibility, default = 1074,

y0 : the column vector of the estimate values of the optimal Lagrange multipliers
for the constraints.

h0 : the estimate Hessian matrix of the objective function at the optimal solution.

Output

x: the optimal solution.

oh: the history of the objective values over major iterations.
y : the optimal Lagrange multipliers.

h : the Hessian at the optimal solution.

tc: the optimal values of the inequality constraints.
Syntax variations include:
[, 0h] = solnp(zxzb)
[x,0h,y, h,ic] = solnp(zzb,ich)

[, 0h,y, h,ic] = solnp(zxb,icb, op)

[, 0h,y, h,ic] = solnp(zxb,icb, op,y0, h0)

4. Running SOLNP

Running SOLNP is a straight forward process:

1. Create a function file named COST.M using any editor. Written in MATLAB
command language, this function computes the objective and constraint func-
tion values.

2. Specify input variables and algorithm parameters and execute the SOLNP com-
mand in MATLAB. SOLNP calls COST.M many times.

3. Analyze the final results, and re-SOLNP if needed.
We now describe each of these steps in details.
4.1. Function File

This is a MATLAB user-defined function to return the values of the objective
and constraint functions at an input x. It should be named COST.M.

The first line of the file is the MATLAB function declaration.
function [f] = cost(x, par)

x is the variable vector used to evaluate the function values, and par informs
users that COST.M is called at a certain condition:

< 0 minor iteration completed,
= 0 gradient evaluation or line search,
> (0 major iteration completed.

This optional feature can be used to display the run time information on the
screen.

The output f is a column vector: f(1) is the value of the objective function
evaluated at x, f(2) through f(m; + 1) are the values of the equality constraints,
and f(my + 2) through f(my + mg + 1) are the values of the inequality constraint
with the same order as icb in the SOLNP command syntax.

4.2, Inputs

Depending on the optimization problem to be solved, the SOLNP command
varies.

1. Unconstrained Optimization

[, 0h] = solnp(z0)

where z0 is any starting values for z. However, a good guess will speed up the
convergence.

2. Equality Constrained Optimization

[z, 0h,y, h] = solnp(x0)
where x0 is any starting values for x. It need not to be feasible.

3. Variable Bounded Optimization

[x,0h, 1, h] = solnp([z0, zb])
where xb is lower and upper bounds of x, and z0 is a starting values inside of xb.

4. Inequality Constrained Optimization

[, 0h,y, h,ic] = solnp(x0,icb)

where z0 is any starting values for z, and icb is the input of inequality constraints
discussed in SOLNP Command Syntax.

5. Equality and Inequality Constrained Optimization

[x,0h, 1, h,ic] = solnp(zx0,icb)

where z0 is any starting values for z, and icb is the input of inequality constraints
discussed in SOLNP Command Syntax. The equality constraints are implicitly
inputed to SOLNP through COST.M file.

6. General Constrained Optimization

[, 0h,y, h,ic] = solnp([x0, zb], icb)

where z0 is any starting values inside xb, the lower and upper bounds for z. ich
is the input of inequality constraints discussed in SOLNP Command Syntax. The
equality constraints are implicitly inputed to SOLNP through COST.M file.

4.3. Parameter Specification

The algorithm parameters can be specified in the third input of SOLNP as
shown in op, if users feel necessary. (In this case, if the optimization problem has
no inequality constraints, issue 0 as the second input.)

p p is used as a penalty weighting scaler for infeasibility in the augmented ob-
jective function. The higher the value of p, the more emphasis will be put on
bringing the solution into the feasible region. Be cautious when using large
value of p, since it might make some numerically ill-conditioned or slow down
the convergence.

maj SOLNP will terminate if the running number of major iterations reaches maj.

min Each major iteration will terminate if the running number of minor iterations
reaches maj.

0 0 is used as the perturbation parameter for numerical gradient calculation. The
gradient is evaluated as
of f(z+ Aey)
3'1']' N A
where ¢e; is the jth unit vector, and
A = dmax(|zj], 1).

e The relative tolerance of feasibility and optimality.
4.4. Result Analysis

After the algorithm has completed the iterative process, you should be careful
to check the final solution to see if it is feasible and optimal by common sense. There
is no guarantee that the final solution is the global solution. The best way is to
check to see if they meet the first and second order optimality conditions. Restart
SOLNP if it terminates at the maximum number of major iterations.

4.5. Restart SOLNP

We recommend to run SOLNP first with default op, [° and h°, and output I, h
and ic (if exists) as well, i.e., issue

[, 0h,y, h,ic] = solnp([z0, Iz, uz], [i0, ln, up])
Then, if necessary, issue

[.77, Oh’v Y, h’v ZC] = SOlTLp([.I', lmv um]v [iC, lh7 Uh], op, Yy, h’)

In the second run, the information of x, y, h and ic will be used in the following
iterations. This gives SOLNP a warm start based on the first run. This essentially
breaks a 20 iteration run into two 10 iteration runs without start from scratch in
the second run.

5. Benchmark Examples

SOLNP has been tested for several benchmark problems in optimization area

(Murtagh and Saunders [2]).

5.1. POWELL: this problem has only equality constraints

min. exp(r122T324Ts)

s.t. 2+ 23+ 2 +2i+2E=10
Toxs — DTaxs = 0
3+ 23 = —1.

The COST.M file is like:

function [f] = cost(zx, par)

xx(2) * 2(3) * 2(4) x 2(5));
7(2)2 4+ 2(3)2 + 2(4)? + 2(5)% — 10;

The starting point is
20 =(-2,2,2,-1,-1).

The SOLNP commands for p =1 and p = 0, respectively, are
> [z, oh, y| = solnp(x0);

and

> [z, oh, y| = solnp(x0,0,0);

The convergence results of SOLNP vs MINOS:

MINOS SOLNP
p 0 1 0
Major itns 4)
Total itns 18 10 11

Table 1. POWELL Test Problem

p is the penalty parameter, Major itns is the number of major iterations used to
converge, and Total itns is the number of total minor iterations used to converge.

10

5.2. WRIGHT4: this problem has only equality constraints

min. (1 —1)2+ (21 — 22)% + (w9 — 23)> + (23 — 24)* + (24 — 75)*
s.t. Ty +2i+ a3 =2+3V2

xg—x§+x4:—2+2\/§

1Ty = 2.

The COST.M file is like:

function [f] = cost(x, par)

%

+(z((x(4) — =(5))*%;
f(2)=2(1)+2(2)2 4+ 2(3)> — 2 — 3 * sqrt(2);
f3)=x(2) —x(3)2 + x(4) + 2 — 2 x sqrt(2);
f(4) = 2(1) x 2(5) — 2
f=1r
return

The starting points:
z0=(1,1,1,1,1),

20 = (2,2,2,2,2),
20 = (—1,3,-1/2, -2, -3),

and
20 = (-1,2,1, -2, —-2).

The SOLNP commands are
> [z, oh, y] = solnp(x0);
> [z, oh, y] = solnp(x0,0,10);
and
> [z, oh, y| = solnp(x0,0,0);

The local optimal points:

z* = (1.1166, 1.2205, 1.5378, 1.9727, 1.7911),
z* = (—2.7909, —3.0041,0.2054, 3.8747, —0.7166),
z* = (—1.273,2.4103,1.1949, —0.1542, —1.5710),

11

and

z* = (—0.7034,2.6357, —0.0964, —1.7980, —2.8434).

The running results of SOLNP vs MINOS:

SOLNP

Start (a) (b) (c) (d)
p 10 1 0 10 1 0 10 1 0 10 1 0
Major 6 6 6 4 4 4 6 6 4 8 4 5
Total 24 26 26 9 10 9 18 14 9 22 9 12
Solu.) (&) (a) (a) (a) (a) (d) (d) (d) (c) () (c)
Table 2. WRIGHT4 Test Problem
Start indicates where z0 is, Solu. indicates where x converges.
5.3. WRIGHTY: this problem has inequality constraints

min. 10z 24 — 6373372 + l'zl'l + 9sin(zs — 13) + TixiTS

s.t. r?+ i+ 2+ 2i+ 22 <20
T2w3 + a5 > —2
a:%:ul + 10x125 > 5.

The COST.M file is like:

function [f] = cost(x, par)
%
f(1)=10*z(1) x x(4) — 6 * =(3)
9 % sin(x(5) — z(3)) + (z(5)*) *
)

) —) * (37()) + (2(2)°);
f(2) = norm(x(1:5))?;
x(
x(

F(3) =2(3) x 2(1)? + (4) * 2(5);
f(4) = o(4) *2(2)* + 10 x z(1) * 2(5);
f=1r;

return

The starting points:
z0=(1,1,1,1,1)

and

x0 = (1.091,—3.174,1.214, —1.614, 2.134).

The SOLNP commands are
> [z, oh, y| = solnp(x0,ib);

12

and

> [z, oh, y] = solnp(x0,ib, 100);

where
—100 20
b = -2 100
5 100
The local optimal points:
x* = (—0.0820, 3.6924,2.4873,0.3772,0.1737) (a)
and
x* = (1.4796, —2.6366,1.0547, —1.6115,2.6739). (b)

The running results of SOLNP vs MINOS:

MINOS SOLNP
Start (a) (b) (a) (b)
p 100 10 100 100 1 100
Major 12 9 5t 7 7 5
Total 92 71 32 45 32 18

Solu. (a) (a) (b) (a) (a) (b)

Table 3. WRIGHT9 Test Problem

5.4. BOX: this problem has one equality constraints and variable bounds

min. —T1X2T3
S.t. 4rix9 + 22223 + 22321 = 100
1<z; <10 forz=1,2,3.

The COST.M file is like:
function [f] = cost(x, par)
%

F) = —a(1) x2(2) * 2(3);
f(2)=4%z(1)*xx(2) +2*x2(2) xx(3) + 2*x(3) xx(1) — 100;

f=1r

return

The starting point:
2’ = (1.1,1.1,9) (a)

13

and (the default)

2% = (5.5,5.5,5.5). (b)
The SOLNP command is
> [z, oh, y] = solnp([x0xb]);
where
1 10
1 10
=11 10
1 10

The optimal solution is

o* = (2.8856,2.8856, 5.7779).

The convergence results of SOLNP

SOLNP
Start (a) (b)
Major 8 4
Total 12 9

Table 4. BOX Test Problem

In general, starting from a “centered” solution (default) has a faster convergence
due to the interior algorithm used in SOLNP.

5.5. ENTROPY: this is a nonconvex problem:

min. —> (Inz;) — In(||z —e]| + 0.1)
s.t. ele=m
x>0

where £ € R™ and e is the vector of all ones.

The COST.M file is like

function [f] = cost(zx, par)
%

[m,n] = size(x);

f(1) = 0;

fori=1:m,

f(1) = (1) = log(x(3));

14

end;

f(1) = f(1) = log(norm(z — ones(x)) + .1);
f(2) = sum(z) —m;

f=1rs

return

The SOLNP command is like

> [z, oh, y] = solnp([z0, zb]);

0

where z” is randomly generated between 0 and 1, and m = 10:

0.8474
0.4524
0.8075
0.4832
0.6135
0.2749
0.8807
0.6538
0.4899
0.7741

0 =

and
zb = (0e 10e).

SOLNP converges to the following solution in 3 major iterations and 14 total
minor iterations.

0.8584
0.8568
0.8620
0.8566
% 0.8560
0.8606
2.2781
0.8556
0.8566
0.8594

5.6. ALKYLA: this problem has both equality and inequality constraints, as well
as the parameter bounds.

15

min. —0.63 % x4 *xx7+50.4x 21 + 3.5 %29+ 23+ 33.6 % 5
S.t. 98 xx3 — 0.1 x4 *xTg*xTg—x3*xxg =0
1000 * 29 + 100 *x x5 — 100 x 1 * £g = 0
122*.1’4— 100*.1’1 - 100*5175 =0
99 < (1.12 % 21 4+ 0.13167 * 1 * x5 — 0.00667 * x7 * x%)/m < 100/99
.99 < (1.098 x g — 0.038 x% + 0.325 % xg + 57.25) /x7 < 100/99
.9 < (—0.222 % 210 + 35.82) /29 < 10/9
99 < (3% 27 —133)/x10 < 100/99
le <% < ug

where
l.=(0 0 0 10 0 8 10 3 1 145)T

and
=(20 16 120 50 20 93 95 12 4 162)T

The COST.M file is like:

function [f] = cost(x, par)

%

f(1) = —0.63 *2:(4) * z(7) + 50.4 * 2:(1) + 3.5 * x(2) + z(3) + 33.6 x z(5);
f(2) =98 % x(3) — 0.1 x 2:(4) * z(6) * x(9) — x(3) * 2:(6);

f(3) = 1000 * x(2) + 100 * z(5) — 100 * 2:(1) * x(8);

f(4) =122 % x(4) — 100 * (1) — 100 * z(5);

f(5) = (1.12 % z(1) 4+ 0.13167 * x(1) * x(8) — 0.00667 * (1) * x(8)?)/z(4);
f(6) = (1.098 % z(8) — 0.038 * z(8) 4 0.325 x x(6) + 57.25) /z(7);

f(7) = (—0.222 % 2(10) + 35.82)/x:(9);

f(8) = (3x=(7) —133)/x(10);

f=1r;

return

The starting point:
z0=(17.45 12 110 30 19.74 89.2 928 8 3.6 155)T
The SOLNP command is
> [z, oh, y] = solnp([x0, xb],ib,0);

where

xb = (lz, uy)

16

and
.99 100/99

99 100/99
9 10/9
99 100/99

The optimal point:

16.9964
15.9994
57.6885
30.3249
. 20.0000
90.5654
95.0000
10.5901
1.5616
153.5353

We used p = 0 to test the program. It converges to the solution in 6 major
iterations and 25 total iterations.

6. SOLNP Diagnostics

This section explains the warning messages and error diagnostics in the SOLNP
module. The messages should provide the necessary information to the user.

1. Variable input must have three columns or less.

Here, the input of the variables, zxb, has been specified with too many columns.
See the SOLNP command syntax.

2. Inequality constraint input must have three columns or less.

Here, the input of the inequality constraints, ich, has been specified with too
many columns. See the SOLNP command syntax.

3. The lower bounds must be strictly less than the upper bounds.

Here, one or more of the values in the lower bound vector is greater than or
equal to the corresponding value in the upper bound vector.

4. Initial variable values must be within the lower and upper bounds.

Here, the initial values of 20 or 0 are not in the interior of their lower and
upper bounds.

17

5. COST function must return a column vector.

SOLNP requires that the output of COST function in COST.M file must be a
column vector. See the SOLNP command syntax.

6. Algorithm parameter must be a vector.

Here, the input of the algorithm parameters op is a matrix. It should be a row
or column vector. See the SOLNP command syntax.

7. The number of constraints returned from COS'T function does not match the
number specified in the call to SOLNP.

SOLNP found that the number of inequality constraints returned from COST
function is no the same as the number of inequality constraints specified in icb.

8. Redundant constraints were found. Poor intermediate result will occur. Remove
redundant constraints and re-SOLNP.

When this message occurs, the linearized Jacobian matrix of constraints is
singular or near singular. This means that the matrix does not have full row- rank.
The program will continue, but the final answers may be suspect. The user should
review the constraint equations, remove any redundant constraints and re-SOLNP.

9. SOLNP completed in # major iterations.

The SOLNP algorithm has successfully solved the optimization problem in the
indicated number of major iterations, satisfying the tolerance for optimality and
feasibility.

10. Exiting after maximum number of major iterations. Tolerance not achieved.

After completing the specified maximum number of major iterations, SOLNP
was not able to achieve required tolerance for optimality and feasibility. You may
rerun SOLNP from the latest outputs. See Restart SOLNP.

11. Suboptimization routine did not converge in specified number of minor itera-
tions.

This message tells you that SOLNP was not able to solve the linearly con-
strained (sub)optimization problem in the specified number of minor iterations. In
most cases, this does not compromise the final solution. In fact, the limit of the
number of minor iterations can be used to improve the overall efficiency. However,
if SOLNP does not perform well, you should rerun SOLNP with a larger number of
minor iterations in op.

18

12. The linearized problem has no feasible solution, The problem may not be fea-
sible.

This message informs you that the linearized suboptimization problem has no
feasible solution. This does not necessarily imply the original problem has no fea-
sible solution. However, if this message appears repeatedly, the original problem
may be infeasible.

7. References

[1] S. M. Robinson, “A quadratically convergent algorithm for general nonlinear
programming problems,” Mathematical Programming 3 (1972) 145-156.

[2] B. A. Murtagh and M. A. Saunders, “MINOS 5.1 user’s guide,” Technical Re-
port SOL 83-20R, Department of OR, Stanford University (Stanford, CA, 1987).

3] Y. Ye, “Interior algorithms for linear, quadratic, and linearly constrained non-
g
linear programming,” Ph.D. Thesis, Department of EES, Stanford University
(Stanford, CA, 1987).

19

