1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
#################################################################################
##
## R package Rsolnp by Alexios Ghalanos and Stefan Theussl Copyright (C) 2009-2013
## This file is part of the R package Rsolnp.
##
## The R package Rsolnp is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## The R package Rsolnp is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
#################################################################################
.eps = .Machine$double.eps
.subnpmsg = function(m){
g1 = c("solnp-->")
m1 = paste("\n",g1, "Redundant constraints were found. Poor\n",
g1, "intermediate results may result.Suggest that you\n",
g1, "remove redundant constraints and re-OPTIMIZE\n", sep = "")
m2 = paste("\n",g1, "The linearized problem has no feasible\n",
g1, "solution. The problem may not be feasible.\n", sep = "")
m3 = paste("\n",g1, "Minor optimization routine did not converge in the \n",
g1, "specified number of minor iterations. You may need\n",
g1, "to increase the number of minor iterations. \n", sep = "")
ans = switch(m,
m1 = m1,
m2 = m2,
m3 = m3)
cat(ans)
}
.checkpars = function(pars, LB, UB, .env)
{
if(is.null(pars))
stop("\nsolnp-->error: must supply starting parameters\n", call. = FALSE)
if(!is.null(LB)){
if(length(pars) != length(LB))
stop("\nsolnp-->error: LB length not equal to parameter length\n", call. = FALSE)
if(is.null(UB)) UB = rep(.Machine$double.xmax/2, length(LB))
} else{
LB = NULL
}
if(!is.null(UB)){
if(length(pars) != length(UB))
stop("\nsolnp-->error: UB length not equal to parameter length\n", call. = FALSE)
if(is.null(LB)) LB = rep(-.Machine$double.xmax/2, length(UB))
} else{
UB = NULL
}
if(!is.null(UB) && any(LB > UB))
stop("\nsolnp-->error: UB must be greater than LB\n", call. = FALSE)
if(!is.null(UB) && any(LB == UB))
warning("\nsolnp-->warning: Equal Lower/Upper Bounds Found. Consider\n
excluding fixed parameters.\n", call. = FALSE)
# deal with infinite values as these are not accepted by solve.QP
if(!is.null(LB) && !any(is.finite(LB))){
idx = which(!is.finite(LB))
LB[idx] = sign(LB[idx])*.Machine$double.xmax/2
}
if(!is.null(UB) && !any(is.finite(UB))){
idx = which(!is.finite(UB))
UB[idx] = sign(UB[idx])*.Machine$double.xmax/2
}
assign(".LB", LB, envir = .env)
assign(".UB", UB, envir = .env)
return(1)
}
.checkfun = function(pars, fun, .env, ...)
{
if(!is.function(fun)) stop("\nsolnp-->error: fun does not appear to be a function\n", call. = FALSE)
val = fun(pars, ...)
if(length(val) != 1) stop("\nsolnp-->error: objective function returns value of length greater than 1!\n", call. = FALSE)
assign(".solnp_fun", fun, envir = .env)
ctmp = get(".solnp_nfn", envir = .env)
assign(".solnp_nfn", ctmp + 1, envir = .env)
return(val)
}
# Might eventually use this, but really the user must take care of such problems
# in their own function/setup
.safefunx = function(pars, fun, .env, ...){
xnames = get("xnames", envir = .env)
names(pars) = xnames
v = fun(pars, ...)
if(is.na(v) | !is.finite(v) | is.nan(v)) {
warning(paste("\nsolnp-->warning: ", v , " detected in function call...check your function\n", sep = ""), immediate. = FALSE)
v = 1e24
}
v
}
.checkgrad = function(pars, fun, .env, ...)
{
n = length(pars)
val = fun(pars, ...)
if(length(val)!=n)
stop("\nsolnp-->error: gradient vector length must be equal to length(pars)\n", call. = FALSE)
assign(".solnp_gradfun", fun, envir = .env)
return(val)
}
.checkhess = function(pars, fun, .env, ...)
{
n = length(pars)
val = fun(pars, ...)
if(length(as.vector(val)) != (n*n))
stop("\nsolnp-->error: hessian must be of length length(pars) x length(pars)\n", call. = FALSE)
assign(".solnp_hessfun", fun, envir = .env)
return(val)
}
.checkineq = function(pars, fun, ineqLB, ineqUB, .env, ...)
{
xnames = get("xnames", envir = .env)
val = fun(pars, ...)
n = length(val)
if(!is.null(ineqLB)){
if(length(ineqLB) != n)
stop("\nsolnp-->error: inequality function returns vector of different length to
inequality lower bounds\n", call. = FALSE)
} else{
stop("\nsolnp-->error: inequality function given without lower bounds\n", call. = FALSE)
}
if(!is.null(ineqUB)){
if(length(ineqUB) != n)
stop("\nsolnp-->error: inequality function returns vector of different length to
inequality upper bounds\n", call. = FALSE)
} else{
stop("\nsolnp-->error: inequality function given without upper bounds\n", call. = FALSE)
}
if(any(ineqLB > ineqUB))
stop("\nsolnp-->error: ineqUB must be greater than ineqLB\n", call. = FALSE)
assign(".ineqLB", ineqLB, envir = .env)
assign(".ineqUB", ineqUB, envir = .env)
.solnp_ineqfun = function(x, ...){
names(x) = xnames
fun(x, ...)
}
assign(".solnp_ineqfun", .solnp_ineqfun, envir = .env)
return(val)
}
.checkeq = function(pars, fun, eqB, .env, ...)
{
xnames = get("xnames", envir = .env)
n = length(eqB)
val = fun(pars, ...) - eqB
if(length(val)!=n)
stop("\nsolnp-->error: equality function returns vector of different length
to equality value\n", call. = FALSE)
.eqB = eqB
assign(".eqB", .eqB, envir = .env)
.solnp_eqfun = function(x, ...){
names(x) = xnames
fun(x, ...) - .eqB
}
assign(".solnp_eqfun", .solnp_eqfun, envir = .env)
return(val)
}
# check the jacobian of inequality
.cheqjacineq = function(pars, fun, .env, ...)
{
# must be a matrix -> nrows = no.inequalities, ncol = length(pars)
val = fun(pars, ...)
.ineqLB = get(".ineqLB", envir = .env)
.ineqUB = get(".ineqUB", envir = .env)
if(!is.matrix(val))
stop("\nsolnp-->error: Jacobian of Inequality must return a matrix type object\n", call. = FALSE)
nd = dim(val)
if(nd[2] != length(pars))
stop("\nsolnp-->error: Jacobian of Inequality column dimension must be equal to length
of parameters\n", call. = FALSE)
if(nd[1] != length(.ineqUB))
stop("\nsolnp-->error: Jacobian of Inequality row dimension must be equal to length
of inequality bounds vector\n", call. = FALSE)
# as in inequality function, transforms from a 2 sided inequality to a one sided inequality
# (for the jacobian).
.solnp_ineqjac = function(x, ...) { retval = fun(x, ...); rbind( retval ) }
assign(".solnp_ineqjac", .solnp_ineqjac, envir = .env)
return(val)
}
# check the jacobian of equality
.cheqjaceq = function(pars, fun, .env, ...)
{
# must be a matrix -> nrows = no.equalities, ncol = length(pars)
val = fun(pars, ...)
.eqB = get(".eqB", envir = .env)
if(!is.matrix(val))
stop("\nsolnp-->error: Jacobian of Equality must return a matrix type object\n", call. = FALSE)
nd = dim(val)
if(nd[2] != length(pars))
stop("\nsolnp-->error: Jacobian of Equality column dimension must be equal to length of parameters\n", call. = FALSE)
if(nd[1] != length(.eqB))
stop("\nsolnp-->error: Jacobian of Equality row dimension must be equal to length of equality bounds vector\n", call. = FALSE)
assign(".solnp_eqjac", fun, envir = .env)
return(val)
}
# reporting function
.report = function(iter, funv, pars)
{
cat( paste( "\nIter: ", iter ," fn: ", format(funv, digits = 4, scientific = 5, nsmall = 4, zero.print = TRUE), "\t Pars: ", sep=""),
format(pars, digits = 4, scientific = 6, nsmall = 5, zero.print = TRUE) )
}
# finite difference gradient
.fdgrad = function(pars, fun, ...)
{
if(!is.null(fun)){
y0 = fun(pars, ...)
nx = length(pars)
grd = rep(0, nx)
deltax = sqrt(.eps)
for(i in 1:nx)
{
init = pars[i]
pars[i]= pars[i] + deltax
grd[i] = (fun(pars, ...) - y0) / deltax
pars[i] = init
}
}
else
{
grd = 0
}
return(grd)
}
# finite difference jacobian
.fdjac = function(pars, fun, ...)
{
nx = length(pars)
if(!is.null(fun))
{
y0 = fun(pars, ...)
nf = length (y0)
jac = matrix(0, nrow = nf, ncol= nx)
deltax = sqrt (.eps)
for(i in 1:nx)
{
init = pars[i]
pars[i]= pars[i] + deltax
jac[,i] = (fun(pars, ...) - y0) / deltax
pars[i] = init
}
} else{
jac = rep(0, nx)
}
return(jac)
}
.emptygrad = function(pars, ...)
{
matrix(0, nrow = 0, ncol = 1)
}
.emptyjac = function(pars, ...)
{
#matrix(0, nrow = 0, ncol = length(pars))
NULL
}
.emptyfun = function(pars, ...)
{
NULL
}
.ineqlbfun = function(pars, .env, ...)
{
LB = get(".solnp_LB", envir = .env)
UB = get(".solnp_UB", envir = .env)
.solnp_ineqfun = get(".solnp_ineqfun", envir = .env)
res = c(pars - LB, UB - pars)
if(!is.null(.solnp_ineqfun)) res = c(.solnp_ineqfun(pars, ...), res)
res
}
.ineqlbjac = function(pars, .env, ...)
{
.solnp_ineqjac = get(".solnp_ineqjac", envir = .env)
n = length(pars)
res = rbind(diag(n), -diag(n))
if(!is.null(.solnp_ineqjac)) res = rbind(.solnp_ineqjac(pars, ...), res)
res
}
.solnpctrl = function(control){
# parameters check is now case independent
ans = list()
params = unlist(control)
if(is.null(params)) {
ans$rho = 1
ans$outer.iter = 400
ans$inner.iter = 800
ans$delta = 1.0e-7
ans$tol = 1.0e-8
ans$trace = 1
} else{
npar = tolower(names(unlist(control)))
names(params) = npar
if(any(substr(npar, 1, 3) == "rho")) ans$rho = as.numeric(params["rho"]) else ans$rho = 1
if(any(substr(npar, 1, 10) == "outer.iter")) ans$outer.iter = as.numeric(params["outer.iter"]) else ans$outer.iter = 400
if(any(substr(npar, 1, 10) == "inner.iter")) ans$inner.iter = as.numeric(params["inner.iter"]) else ans$inner.iter = 800
if(any(substr(npar, 1, 5) == "delta")) ans$delta = as.numeric(params["delta"]) else ans$delta = 1.0e-7
if(any(substr(npar, 1, 3) == "tol")) ans$tol = as.numeric(params["tol"]) else ans$tol = 1.0e-8
if(any(substr(npar, 1, 5) == "trace")) ans$trace = as.numeric(params["trace"]) else ans$trace = 1
}
return(ans)
}
.zeros = function( n = 1, m = 1)
{
if(missing(m)) m = n
sol = matrix(0, nrow = n, ncol = m)
return(sol)
}
.ones = function(n = 1, m = 1)
{
if(missing(m)) m = n
sol = matrix(1, nrow = n, ncol = m)
return(sol)
}
.vnorm = function(x)
{
sum((x)^2)^(1/2)
}
.solvecond = function(x)
{
z = svd(x)$d
if(any( z == 0 )) ret = Inf else ret = max( z ) / min( z )
return(ret)
}
|