1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#################################################################################
##
## R package Rsolnp by Alexios Ghalanos and Stefan Theussl Copyright (C) 2009-2013
## This file is part of the R package Rsolnp.
##
## The R package Rsolnp is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## The R package Rsolnp is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
#################################################################################
# Based on the original solnp by Yinyu Ye
# http://www.stanford.edu/~yyye/Col.html
#----------------------------------------------------------------------------------
# The Function SOLNP solves nonlinear programs in standard form:
#
# minimize J(P)
# subject to EC(P) =0
# IB(:,1)<= IC(P) <=IB(:,2)
# PB(:,1)<= P <=PB(:,2).
#where
#
# J : Cost objective scalar function
# EC : Equality constraint vector function
# IC : Inequality constraint vector function
# P : Decision parameter vector
# IB, PB : lower and upper bounds for IC and P.
#----------------------------------------------------------------------------------
# control list
# RHO : penalty parameter
# MAJIT: maximum number of major iterations
# MINIT: maximum number of minor iterations
# DELTA: relative step size in forward difference evaluation
# TOL : tolerance on feasibility and optimality
# defaults RHO=1, MAJIT=10, MINIT=10, DELTA=1.0e-5, TOL=1.0e-4
solnp = function(pars, fun, eqfun = NULL, eqB = NULL, ineqfun = NULL, ineqLB = NULL, ineqUB = NULL, LB = NULL, UB = NULL, control = list(), ...)
{
# start timer
tic = Sys.time()
xnames = names(pars)
# get environment
.solnpenv <- environment()
assign("xnames", xnames, envir = .solnpenv)
# initiate function count
assign(".solnp_nfn", 0, envir = .solnpenv)
assign(".solnp_errors", 0, envir = .solnpenv)
# index of function indicators
# [1] length of pars
# [2] has function gradient?
# [3] has hessian?
# [4] has ineq?
# [5] ineq length
# [6] has jacobian (inequality)
# [7] has eq?
# [8] eq length
# [9] has jacobian (equality)
# [10] has upper / lower bounds
# [11] has either lower/upper bounds or ineq
ind = rep(0, 11)
np = ind[1] = length(pars)
# lower parameter bounds - indicator
# lpb[1]=1 means lower/upper bounds present
# lpb[2]=1 means lower/upper bounds OR inequality bounds present
# do parameter and LB/UB checks
check1 = .checkpars(pars, LB, UB, .solnpenv)
# .LB and .UB assigned
.LB = get(".LB", envir = .solnpenv)
.UB = get(".UB", envir = .solnpenv)
if( !is.null(.LB) || !is.null(.UB) ) ind[10] = 1
# do function checks and return starting value
funv = .checkfun(pars, fun, .solnpenv, ...)
#.solnp_fun assigned
.solnp_fun = get(".solnp_fun", envir = .solnpenv)
# Analytical Gradient Functionality not yet implemented in subnp function
# gradient and hessian checks
#if(!is.null(grad)){
# gradv = .checkgrad(pars, grad, .solnpenv, ...)
# ind[2] = 1
#} else{
# .solnp_gradfun = function(pars, ...) .fdgrad(pars, fun = .solnp_fun, ...)
ind[2] = 0
# gradv = .solnp_gradfun(pars, ...)
#}
# .solnp_gradfun(pars, ...) assigned
.solnp_hessfun = NULL
ind[3] = 0
#hessv = NULL
# .solnp_hessfun(pars, ...) assigned
# do inequality checks and return starting values
if(!is.null(ineqfun)){
ineqv = .checkineq(pars, ineqfun, ineqLB, ineqUB, .solnpenv, ...)
ind[4] = 1
nineq = length(ineqLB)
ind[5] = nineq
# check for infinities/nans
.ineqLBx = .ineqLB
.ineqUBx = .ineqUB
.ineqLBx[!is.finite(.ineqLB)] = -1e10
.ineqUBx[!is.finite(.ineqUB)] = 1e10
ineqx0 = (.ineqLBx + .ineqUBx)/2
#if(!is.null(ineqgrad)){
# ineqjacv = .cheqjacineq(pars, gradineq, .ineqUB, .ineqLB, .solnpenv, ...)
# ind[6] = 1
#} else{
# .solnp_ineqjac = function(pars, ...) .fdjac(pars, fun = .solnp_ineqfun, ...)
ind[6] = 0
#ineqjacv = .solnp_ineqjac(pars, ...)
#}
} else{
.solnp_ineqfun = function(pars, ...) .emptyfun(pars, ...)
# .solnp_ineqjac = function(pars, ...) .emptyjac(pars, ...)
ineqv = NULL
ind[4] = 0
nineq = 0
ind[5] = 0
ind[6] = 0
ineqx0 = NULL
.ineqLB = NULL
.ineqUB = NULL
}
# .solnp_ineqfun and .solnp_ineqjac assigned
# .ineqLB and .ineqUB assigned
.solnp_ineqfun = get(".solnp_ineqfun", envir = .solnpenv)
.ineqLB = get(".ineqLB", envir = .solnpenv)
.ineqUB = get(".ineqUB", envir = .solnpenv)
# equality checks
if(!is.null(eqfun)){
eqv = .checkeq(pars, eqfun, eqB, .solnpenv, ...)
ind[7] = 1
.eqB = get(".eqB", envir = .solnpenv)
neq = length(.eqB)
ind[8] = neq
#if(!is.null(eqgrad)){
# eqjacv = .cheqjaceq(pars, gradeq, .solnpenv, ...)
# ind[9] = 1
#} else{
# .solnp_eqjac = function(pars, ...) .fdjac(pars, fun = .solnp_eqfun, ...)
# eqjacv = .solnp_eqjac(pars, ...)
ind[9] = 0
#}
} else {
eqv = NULL
#eqjacv = NULL
.solnp_eqfun = function(pars, ...) .emptyfun(pars, ...)
#.solnp_eqjac = function(pars, ...) .emptyjac(pars, ...)
ind[7] = 0
neq = 0
ind[8] = 0
ind[9] = 0
}
# .solnp_eqfun(pars, ...) and .solnp_eqjac(pars, ...) assigned
# .solnp_eqB assigned
.solnp_eqfun = get(".solnp_eqfun", envir = .solnpenv)
if( ind[ 10 ] || ind [ 4 ]) ind[ 11 ] = 1
# parameter bounds (pb)
pb = rbind( cbind(.ineqLB, .ineqUB), cbind(.LB, .UB) )
# check control list
ctrl = .solnpctrl( control )
rho = ctrl[[ 1 ]]
# maxit = outer iterations
maxit = ctrl[[ 2 ]]
# minit = inner iterations
minit = ctrl[[ 3 ]]
delta = ctrl[[ 4 ]]
tol = ctrl[[ 5 ]]
trace = ctrl[[ 6 ]]
# total constraints (tc) = no.inequality constraints + no.equality constraints
tc = nineq + neq
# initialize fn value and inequalities and set to NULL those not needed
j = jh = funv
tt = 0 * .ones(3, 1)
if( tc > 0 ) {
# lagrange multipliers (lambda)
lambda = 0 * .ones(tc, 1)
# constraint vector = [1:neq 1:nineq]
constraint = c(eqv, ineqv)
if( ind[4] ) {
tmpv = cbind(constraint[ (neq + 1):tc ] - .ineqLB, .ineqUB - constraint[ (neq + 1):tc ] )
testmin = apply( tmpv, 1, FUN = function( x ) min(x[ 1 ], x[ 2 ]) )
if( all(testmin > 0) ) ineqx0 = constraint[ (neq + 1):tc ]
constraint[ (neq + 1):tc ] = constraint[ (neq + 1):tc ] - ineqx0
}
tt[ 2 ] = .vnorm(constraint)
if( max(tt[ 2 ] - 10 * tol, nineq, na.rm = TRUE) <= 0 ) rho = 0
} else{
lambda = 0
}
# starting augmented parameter vector
p = c(ineqx0, pars)
hessv = diag(np + nineq)
mu = np
.solnp_iter = 0
ob = c(funv, eqv, ineqv)
while( .solnp_iter < maxit ){
.solnp_iter = .solnp_iter + 1
.subnp_ctrl = c(rho, minit, delta, tol, trace)
# make the scale for the cost, the equality constraints, the inequality
# constraints, and the parameters
if( ind[7] ) {
# [1 neq]
vscale = c( ob[ 1 ], rep(1, neq) * max( abs(ob[ 2:(neq + 1) ]) ) )
} else {
vscale = 1
}
if( !ind[ 11 ] ) {
vscale = c(vscale, p)
} else {
# [ 1 neq np]
vscale = c(vscale, rep( 1, length.out = length(p) ) )
}
vscale = apply( matrix(vscale, ncol = 1), 1, FUN = function( x ) min( max( abs(x), tol ), 1/tol ) )
res = .subnp(pars = p, yy = lambda, ob = ob, hessv = hessv, lambda = mu, vscale = vscale,
ctrl = .subnp_ctrl, .env = .solnpenv, ...)
if(get(".solnp_errors", envir = .solnpenv) == 1){
maxit = .solnp_iter
}
p = res$p
lambda = res$y
hessv = res$hessv
mu = res$lambda
temp = p[ (nineq + 1):(nineq + np) ]
funv = .safefunx(temp, .solnp_fun, .env = .solnpenv, ...)
ctmp = get(".solnp_nfn", envir = .solnpenv)
assign(".solnp_nfn", ctmp + 1, envir = .solnpenv)
tempdf = cbind(temp, funv)
if( trace ){
.report(.solnp_iter, funv, temp)
}
eqv = .solnp_eqfun(temp, ...)
ineqv = .solnp_ineqfun(temp, ...)
ob = c(funv, eqv, ineqv)
tt[ 1 ] = (j - ob[ 1 ]) / max(abs(ob[ 1 ]), 1)
j = ob[ 1 ]
if( tc > 0 ){
constraint = ob[ 2:(tc + 1) ]
if( ind[ 4 ] ){
tempv = rbind( constraint[ (neq + 1):tc ] - pb[ 1:nineq, 1 ],
pb[ 1:nineq, 2 ] - constraint[ (neq + 1):tc ] )
if( min(tempv) > 0 ) {
p[ 1:nineq ] = constraint[ (neq + 1):tc ]
}
constraint[ (neq + 1):tc ] = constraint[ (neq + 1):tc ] - p[ 1:nineq ]
}
tt[ 3 ] = .vnorm(constraint)
if( tt[ 3 ] < 10 * tol ) {
rho = 0
mu = min(mu, tol)
}
if( tt[ 3 ] < 5 * tt[ 2 ]) {
rho = rho/5
}
if( tt[ 3 ] > 10 * tt[ 2 ]) {
rho = 5 * max( rho, sqrt(tol) )
}
if( max( c( tol + tt[ 1 ], tt[ 2 ] - tt[ 3 ] ) ) <= 0 ) {
lambda = 0
hessv = diag( diag ( hessv ) )
}
tt[ 2 ] = tt[ 3 ]
}
if( .vnorm( c(tt[ 1 ], tt[ 2 ]) ) <= tol ) {
maxit = .solnp_iter
}
jh = c(jh, j)
}
if( ind[ 4 ] ) {
ineqx0 = p[ 1:nineq ]
}
p = p[ (nineq + 1):(nineq + np) ]
if(get(".solnp_errors", envir = .solnpenv) == 1){
convergence = 2
if( trace ) cat( paste( "\nsolnp--> Solution not reliable....Problem Inverting Hessian.\n", sep="" ) )
} else{
if( .vnorm( c(tt[ 1 ], tt[ 2 ]) ) <= tol ) {
convergence = 0
if( trace ) cat( paste( "\nsolnp--> Completed in ", .solnp_iter, " iterations\n", sep="" ) )
} else{
convergence = 1
if( trace ) cat( paste( "\nsolnp--> Exiting after maximum number of iterations\n",
"Tolerance not achieved\n", sep="" ) )
}
}
# end timer
ctmp = get(".solnp_nfn", envir = .solnpenv)
toc = Sys.time() - tic
names(p) = xnames
ans = list(pars = p, convergence = convergence, values = as.numeric(jh), lagrange = lambda,
hessian = hessv, ineqx0 = ineqx0, nfuneval = ctmp, outer.iter = .solnp_iter,
elapsed = toc, vscale = vscale)
return( ans )
}
|