File: startpars.Rd

package info (click to toggle)
r-cran-rsolnp 1.16%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 324 kB
  • sloc: makefile: 2
file content (172 lines) | stat: -rw-r--r-- 6,093 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
\name{startpars}
\alias{startpars}
\title{
Generates and returns a set of starting parameters by sampling the parameter 
space based on the evaluation of the function and constraints.
}
\description{
A simple penalty barrier function is formed which is then evaluated at randomly 
sampled points based on the upper and lower parameter bounds 
(when \code{eval.type} = 2), else the objective function directly for values not 
violating any inequality constraints (when \code{eval.type} = 1). The sampled 
points can be generated from the uniform, normal or truncated normal 
distributions.
}
\usage{
startpars(pars = NULL, fixed = NULL, fun, eqfun = NULL, eqB = NULL, 
ineqfun = NULL, ineqLB = NULL, ineqUB = NULL, LB = NULL, UB = NULL, 
distr = rep(1, length(LB)), distr.opt = list(), n.sim = 20000, cluster = NULL, 
rseed = NULL, bestN = 15, eval.type = 1, trace = FALSE, ...)
}
\arguments{
  \item{pars}{
The starting parameter vector. This is not required unless the fixed option is 
also used.
}
  \item{fixed}{
The numeric index which indicates those parameters which should stay fixed 
instead of being randomly generated.
}
  \item{fun}{
The main function which takes as first argument the parameter vector and returns 
a single value.
}
  \item{eqfun}{
(Optional) The equality constraint function returning the vector of evaluated 
equality constraints.
}
  \item{eqB}{
(Optional) The equality constraints.
}
  \item{ineqfun}{
(Optional) The inequality constraint function returning the vector of evaluated 
inequality constraints.
}
  \item{ineqLB}{
(Optional) The lower bound of the inequality constraints.
}
  \item{ineqUB}{
(Optional) The upper bound of the inequality constraints.
}
  \item{LB}{
The lower bound on the parameters. This is not optional in this function.
}
  \item{UB}{
The upper bound on the parameters. This is not optional in this function.
}
  \item{distr}{
A numeric vector of length equal to the number of parameters, indicating the 
choice of distribution to use for the random parameter generation. Choices are 
uniform (1), truncated normal (2), and normal (3).
}
  \item{distr.opt}{
If any choice in \code{distr} was anything other than uniform (1), this is a 
list equal to the length of the parameters with sub-components for the mean and 
sd, which are required in the truncated normal and normal distributions.
}
  \item{bestN}{
The best N (less than or equal to n.sim) set of parameters to return.
}
  \item{n.sim}{
The number of random parameter sets to generate.
}
  \item{cluster}{ 
If you want to make use of parallel functionality, initialize and pass a cluster 
object from the parallel package (see details), and remember to terminate it!
}
  \item{rseed}{
(Optional) A seed to initiate the random number generator, else system time will 
be used.
}
  \item{eval.type}{
Either 1 (default) for the direction evaluation of the function (excluding 
inequality constraint violations) or 2 for the penalty barrier method.
}
  \item{trace}{
(logical) Whether to display the progress of the function evaluation.
}
  \item{\dots}{
(Optional) Additional parameters passed to the main, equality or inequality 
functions
}
}
\details{
Given a set of lower and upper bounds, the function generates, for those 
parameters not set as fixed, random values from one of the 3 chosen 
distributions. For simple functions with only inequality constraints, the direct 
method (\code{eval.type} = 1) might work better. For more complex setups with 
both equality and inequality constraints the penalty barrier method 
(\code{eval.type} = 2)might be a better choice.
}
\value{
A matrix of dimension bestN x (no.parameters + 1). The last column is the 
evaluated function value.
}
\author{
Alexios Ghalanos and Stefan Theussl\cr
}
\note{
The choice of which distribution to use for randomly sampling the parameter 
space should be driven by the user's knowledge of the problem and confidence or 
lack thereof of the parameter distribution. The uniform distribution indicates a 
lack of confidence in the location or dispersion of the parameter, while the 
truncated normal indicates a more confident choice in both the location and 
dispersion. On the other hand, the normal indicates perhaps a lack
of knowledge in the upper or lower bounds, but some confidence in the location 
and dispersion of the parameter. In using choices (2) and (3) for \code{distr}, 
the \code{distr.opt} list must be supplied with \code{mean} and \code{sd} as 
subcomponents for those parameters not using the uniform.
}
\examples{
\dontrun{
library(Rsolnp)
library(parallel)
# Windows
cl = makePSOCKcluster(2)
# Linux:
# makeForkCluster(nnodes = getOption("mc.cores", 2L), ...)

gofn = function(dat, n)
{
	
	x = dat[1:n]
	y = dat[(n+1):(2*n)]
	z = dat[(2*n+1):(3*n)]
	ii = matrix(1:n, ncol = n, nrow = n, byrow = TRUE)
	jj = matrix(1:n, ncol = n, nrow = n)
	ij = which(ii<jj, arr.ind = TRUE)
	i = ij[,1]
	j = ij[,2]
	#  Coulomb potential
	potential = sum(1.0/sqrt((x[i]-x[j])^2 + (y[i]-y[j])^2 + (z[i]-z[j])^2))
	potential
}

goeqfn = function(dat, n)
{
	x = dat[1:n]
	y = dat[(n+1):(2*n)]
	z = dat[(2*n+1):(3*n)]
	apply(cbind(x^2, y^2, z^2), 1, "sum")
}
n = 25
LB  = rep(-1, 3*n)
UB  = rep( 1, 3*n)
eqB = rep( 1,   n)

sp = startpars(pars = NULL, fixed = NULL, fun = gofn , eqfun = goeqfn, 
eqB = eqB, ineqfun = NULL, ineqLB = NULL, ineqUB = NULL, LB = LB, UB = UB, 
distr = rep(1, length(LB)), distr.opt = list(), n.sim = 2000, 
cluster = cl, rseed = 100, bestN = 15, eval.type = 2, n = 25)
#stop cluster
stopCluster(cl)
# the last column is the value of the evaluated function (here it is the barrier 
# function since eval.type = 2) 
print(round(apply(sp, 2, "mean"), 3))
# remember to remove the last column
ans = solnp(pars=sp[1,-76],fun = gofn , eqfun = goeqfn , eqB = eqB, ineqfun = NULL, 
ineqLB = NULL, ineqUB = NULL, LB = LB, UB = UB, n = 25)
# should get a value of around 243.8162
}}

\keyword{optimize}