File: jm_data_block.R

package info (click to toggle)
r-cran-rstanarm 2.21.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,964 kB
  • sloc: cpp: 47; sh: 18; makefile: 2
file content (2042 lines) | stat: -rw-r--r-- 87,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
# Part of the rstanarm package for estimating model parameters
# Copyright (C) 2013, 2014, 2015, 2016, 2017 Trustees of Columbia University
# Copyright (C) 2016, 2017 Sam Brilleman
# 
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

.datatable.aware <- TRUE # necessary for some reason when data.table is in Suggests

#--------------- Miscellaneous and helper functions

#' @importFrom survival Surv
#' @export
survival::Surv

# Check input argument is a valid type, and return as a list
#
# @param arg The user input to the argument
# @param type A character vector of valid classes
# @param validate_length The required length of the returned list
# @return A list
validate_arg <- function(arg, type, validate_length = NULL) {
  nm <- deparse(substitute(arg))
  
  if (inherits(arg, type)) { 
    # input type is valid, so return as a list
    arg <- list(arg)
  } 
  else if (is(arg, "list")) { 
    # input type is a list, check each element
    check <- sapply(arg, function(x) inherits(x, type))
    if (!all(check))
      STOP_arg(nm, type)
  } 
  else {
    # input type is not valid
    STOP_arg(nm, type)
  }
  
  if (!is.null(validate_length)) {
    # return list of the specified length
    if (length(arg) == 1L)
      arg <- rep(arg, times = validate_length)
    if (!length(arg) == validate_length)
      stop2(nm, " is a list of the incorrect length.")
  }
  
  if ("data.frame" %in% type)
    arg <- lapply(arg, as.data.frame)
  if ("family" %in% type)
    arg <- lapply(arg, validate_family)
  arg
}

# Check if the user input a list of priors for the longitudinal
# submodel, and if not, then return the appropriate list
#
# @param prior The user input to the prior argument in the stan_mvmer 
#   or stan_jm call
# @param M An integer specifying the number of longitudinal submodels
broadcast_prior <- function(prior, M) {
  if (is.null(prior)) {
    return(rep(list(NULL), M))
  } 
  else if ("dist" %in% names(prior)) {
    return(rep(list(prior), M))
  } 
  else if (is.list(prior) && length(prior) == M) {
    return(prior)
  } 
  else {
    nm <- deparse(substitute(priorarg))
    stop2(nm, " appears to provide prior information separately for the ",
          "different submodels, but the list is of the incorrect length.")
  }
}

# From a vector of length M giving the number of elements (for example number
# of parameters or observations) for each submodel, create an indexing array 
# of dimension M * 2, where column 1 is the beginning index and 2 is the end index
#
# @param x A numeric vector
# @return A length(x) * 2 array
get_idx_array <- function(x) {
  as.array(do.call("rbind", lapply(1:length(x), function(i) {
    idx_beg <- ifelse(x[i] > 0L, sum(x[0:(i-1)]) + 1, 0L)
    idx_end <- ifelse(x[i] > 0L, sum(x[0:i]),         0L)
    c(idx_beg, idx_end)
  })))
}

# Function to return the range or SD of the predictors, used for scaling the priors
# This is taken from an anonymous function in stan_glm.fit
#
# @param x A vector
get_scale_value <- function(x) {
  num.categories <- n_distinct(x)
  x.scale <- 1
  if (num.categories == 2) {
    x.scale <- diff(range(x))
  } else if (num.categories > 2) {
    x.scale <- sd(x)
  }
  return(x.scale)
}

# Apply a lag to a vector of times
#
# @param x A numeric vector (e.g. observation times)
# @param lag A scalar (the lag time)
# @return A numeric vector
set_lag <- function(x, lag) {
  x <- x - lag
  x[x < 0] <- 0.0  # use baseline for lag times prior to baseline
  x
}

# Get the required number of (local) horseshoe parameters for a specified prior type
#
# @param prior_dist An integer indicating the type of prior distribution: 
#   where 1L == normal, 2L == t, 3L == hs, 4L == hs_plus
get_nvars_for_hs <- function(prior_dist) {
  if      (prior_dist <= 2L) return(0L) 
  else if (prior_dist == 3L) return(2L) 
  else if (prior_dist == 4L) return(4L)
  else return(0L)
}

# Reformulate an expression as the LHS of a model formula
# 
# @param x The expression to reformulate
# @return A model formula
reformulate_lhs <- function(x) {
  formula(substitute(LHS ~ 1, list(LHS = x)))
}

# Reformulate an expression as the RHS of a model formula
# 
# @param x The expression to reformulate
# @param subbars A logical specifying whether to call lme4::subbars
#   on the result
# @return A model formula
reformulate_rhs <- function(x, subbars = FALSE) {
  fm <- formula(substitute(~ RHS, list(RHS = x)))
  if (subbars) {
    lme4::subbars(fm)
  } else {
    fm
  }
}

#--------------- Functions related to priors

# Deal with covariance prior
#
# @param prior A list
# @param cnms A list of lists, with names of the group specific 
#   terms for each grouping factor
# @param ok_dists A list of admissible distributions
handle_cov_prior <- function(prior, cnms, ok_dists = nlist("decov", "lkj")) {
  if (!is.list(prior)) 
    stop(sQuote(deparse(substitute(prior))), " should be a named list")
  t <- length(unique(cnms)) # num grouping factors
  p <- sapply(cnms, length) # num terms for each grouping factor
  prior_dist_name <- prior$dist
  if (!prior_dist_name %in% unlist(ok_dists)) {
    stop("The prior distribution should be one of ",
         paste(names(ok_dists), collapse = ", "))
  } else if (prior_dist_name == "decov") {
    prior_shape <- as.array(maybe_broadcast(prior$shape, t))
    prior_scale <- as.array(maybe_broadcast(prior$scale, t))
    prior_concentration <- 
      as.array(maybe_broadcast(prior$concentration, sum(p[p > 1])))
    prior_regularization <- 
      as.array(maybe_broadcast(prior$regularization, sum(p > 1)))
    prior_df <- NULL
  } else if (prior_dist_name == "lkj") {
    prior_shape <- NULL
    prior_scale <- as.array(maybe_broadcast(prior$scale, sum(p)))
    prior_concentration <- NULL
    prior_regularization <- 
      as.array(maybe_broadcast(prior$regularization, sum(p > 1)))
    prior_df <- as.array(maybe_broadcast(prior$df, sum(p)))
  }
  prior_dist <- switch(prior_dist_name, decov = 1L, lkj = 2L)
  
  nlist(prior_dist_name, prior_dist, prior_shape, prior_scale, 
        prior_concentration, prior_regularization, prior_df, t, p,
        prior_autoscale = isTRUE(prior$autoscale))
}  

# Seperate the information about the covariance prior into a list
# of lists. At the top level of the returned list the elements 
# correpond to each of the grouping factors, and on the second level
# of the returned list the elements correpsond to the separate glmer
# submodels. This separation is required for autoscaling the priors 
# on the sds of group level effects, since these are autoscaled based
# on the separate Z matrices (design matrices for the random effects).
#
# @param prior_stuff The named list returned by handle_cov_prior
# @param cnms The component names for group level terms, combined across
#   all glmer submodels
# @param submodel_cnms The component names for the group level terms, 
#   separately for each glmer submodel (stored as a list of length M)
# @return A list with each element containing the covariance prior
#   information for one grouping factor
split_cov_prior <- function(prior_stuff, cnms, submodel_cnms) {
  if (!prior_stuff$prior_dist_name == "lkj") {
    return(prior_stuff) # nothing to be done for decov prior
  } else {
    M <- length(submodel_cnms) # number of submodels
    cnms_nms <- names(cnms) # names of grouping factors
    mark <- 0
    new_prior_stuff <- list()
    for (nm in cnms_nms) {
      for (m in 1:M) {
        len <- length(submodel_cnms[[m]][[nm]])
        new_prior_stuff[[nm]][[m]] <- prior_stuff 
        if (len) {
          # submodel 'm' has group level terms for group factor 'nm'
          beg <- mark + 1; end <- mark + len
          new_prior_stuff[[nm]][[m]]$prior_scale <- prior_stuff$prior_scale[beg:end]
          new_prior_stuff[[nm]][[m]]$prior_df <- prior_stuff$prior_df[beg:end]
          mark <- mark + len
        } else {
          new_prior_stuff[[nm]][[m]]$prior_scale <- NULL
          new_prior_stuff[[nm]][[m]]$prior_df <- NULL
          new_prior_stuff[[nm]][[m]]$prior_regularization <- NULL
        }
      }
    }    
  }
  new_prior_stuff
}

# Autoscaling of priors
#
# @param prior_stuff A named list returned by a call to handle_glm_prior
# @param response A vector containing the response variable, only required if
#   the priors are to be scaled by the standard deviation of the response (for
#   gaussian reponse variables only)
# @param predictors The predictor matrix, only required if the priors are to be
#   scaled by the range/sd of the predictors
# @param family A family object
# @param QR A logical specifying whether QR decomposition is used for the 
#   predictor matrix
# @param min_prior_scale The minimum allowed for prior scales
# @param assoc A two dimensional array with information about desired association
#   structure for the joint model (returned by a call to validate_assoc). Cannot
#   be NULL if autoscaling priors for the association parameters.
# @param ... Other arguments passed to make_assoc_terms. If autoscaling priors 
#   for the association parameters then this should include 'parts' which 
#   is a list containing the design matrices for the longitudinal submodel 
#   evaluated at the quadrature points, as well as 'beta' and 'b' which are
#   the parameter values to use when constructing the linear predictor(s) in
#   make_assoc_terms.
# @return A named list with the same structure as returned by handle_glm_prior
autoscale_prior <- function(prior_stuff, response = NULL, predictors = NULL, 
                            family = NULL, QR = FALSE, min_prior_scale = 1e-12, 
                            assoc = NULL, ...) {
  ps <- prior_stuff
  
  if (!identical(NULL, response) && is.gaussian(family$family)) { 
    # use response variable for scaling priors
    if (ps$prior_dist > 0L && ps$prior_autoscale) {
      ss <- sd(response)
      ps$prior_scale <- ss * ps$prior_scale
    }
  }
  
  if (!identical(NULL, predictors) && !QR) {
    # use predictors for scaling priors
    if (ps$prior_dist > 0L && ps$prior_autoscale) {
      ps$prior_scale <- 
        pmax(min_prior_scale,
             ps$prior_scale / apply(predictors, 2L, get_scale_value))
    }      
  }
  
  if (!identical(NULL, assoc)) {
    # Evaluate mean and SD of each of the association terms that will go into
    # the linear predictor for the event submodel (as implicit "covariates").
    # (NB the approximate association terms are calculated using coefs
    # from the separate longitudinal submodels estimated using glmer).
    # The mean will be used for centering each association term.
    # The SD will be used for autoscaling the prior for each association parameter.
    if (identical(NULL, family))
      stop("'family' cannot be NULL when autoscaling association parameters.")
    assoc_terms <- make_assoc_terms(family = family, assoc = assoc, ...)
    ps$a_xbar <- as.array(apply(assoc_terms, 2L, mean))
    if (ps$prior_dist > 0L && ps$prior_autoscale) {
      a_beta_scale <- apply(assoc_terms, 2L, get_scale_value)
      ps$prior_scale <- pmax(min_prior_scale, ps$prior_scale / a_beta_scale)
    }
  }
  
  ps$prior_scale <- as.array(pmin(.Machine$double.xmax, ps$prior_scale))
  ps
}

# Create "prior.info" attribute for stan_{mvmer,jm}; needed for prior_summary()
#
# @param user_* The user's priors. These should be passed in after broadcasting 
#   the df/location/scale arguments if necessary.
# @param y_has_intercept Vector of T/F, does each long submodel have an intercept?
# @param y_has_predictors Vector of T/F, does each long submodel have predictors?
# @param e_has_intercept T/F, does event submodel have an intercept?
# @param e_has_predictors T/F, does event submodel have predictors?
# @param has_assoc Logical specifying whether the model has an association 
#   structure. Can be NULL if the prior summary is not for a joint model.
# @param adjusted_prior_*_scale Adjusted scales computed if using autoscaled priors
# @param family A list of family objects.
# @param basehaz A list with information about the baseline hazard.
# @param stub_for_names Character string with the text stub to use in the 
#   names identifying the glmer or longitudinal submodels. 
# @return A named list with components 'prior*', 'prior*_intercept', 
#   'prior_covariance' and 'prior*_aux' each of which itself is a list
#   containing the needed values for prior_summary.
summarize_jm_prior <-
  function(user_priorLong = NULL,
           user_priorLong_intercept = NULL,
           user_priorLong_aux = NULL,
           user_priorEvent = NULL,
           user_priorEvent_intercept = NULL,
           user_priorEvent_aux = NULL,
           user_priorEvent_assoc = NULL,
           user_prior_covariance = NULL,
           b_user_prior_stuff = NULL,
           b_prior_stuff = NULL,
           y_has_intercept = NULL,
           e_has_intercept = NULL,
           y_has_predictors = NULL,
           e_has_predictors = NULL,
           has_assoc = NULL,
           adjusted_priorLong_scale = NULL,
           adjusted_priorLong_intercept_scale = NULL, 
           adjusted_priorLong_aux_scale = NULL,
           adjusted_priorEvent_scale = NULL,
           adjusted_priorEvent_intercept_scale = NULL, 
           adjusted_priorEvent_aux_scale = NULL,           
           adjusted_priorEvent_assoc_scale = NULL,
           family = NULL, 
           basehaz = NULL,
           stub_for_names = "Long") {
    if (!is.null(family) && !is(family, "list"))
      stop("'family' should be a list of family objects, one for each submodel.")
    if (!is.null(has_assoc) && !is.logical(has_assoc) && (length(has_assoc) == 1L))
      stop("'has_assoc' should be a logical vector of length 1.")
    M <- length(family)
    
    prior_list <- list()
    
    if (!is.null(user_priorLong)) {
      rescaled_coefLong <- mapply(check_if_rescaled, user_priorLong, 
                                  y_has_predictors, adjusted_priorLong_scale)
      rescaled_intLong  <- mapply(check_if_rescaled, user_priorLong_intercept, 
                                  y_has_intercept, adjusted_priorLong_intercept_scale)
      rescaled_auxLong  <- mapply(check_if_rescaled, user_priorLong_aux, 
                                  TRUE, adjusted_priorLong_aux_scale) 
      for (m in 1:M) {
        user_priorLong[[m]] <- 
          rename_t_and_cauchy(user_priorLong[[m]], y_has_predictors[m])
        user_priorLong_intercept[[m]] <-
          rename_t_and_cauchy(user_priorLong_intercept[[m]], y_has_intercept[m])
        user_priorLong_aux[[m]] <-
          rename_t_and_cauchy(user_priorLong_aux[[m]], TRUE)
      }
      prior_list$priorLong <- list_nms(lapply(1:M, function(m) {
        if (!y_has_predictors[m]) NULL else with(user_priorLong[[m]], list(
          dist = prior_dist_name,
          location = prior_mean,
          scale = prior_scale,
          adjusted_scale = if (rescaled_coefLong[m])
            adjusted_priorLong_scale[[m]] else NULL,
          df = if (prior_dist_name %in% c
                   ("student_t", "hs", "hs_plus", "lasso", "product_normal"))
            prior_df else NULL
        ))        
      }), M, stub = stub_for_names)
      prior_list$priorLong_intercept <- list_nms(lapply(1:M, function(m) {
        if (!y_has_intercept[m]) NULL else with(user_priorLong_intercept[[m]], list(
          dist = prior_dist_name,
          location = prior_mean,
          scale = prior_scale,
          adjusted_scale = if (rescaled_intLong[m]) 
            adjusted_priorLong_intercept_scale[[m]] else NULL,
          df = if (prior_dist_name %in% "student_t") 
            prior_df else NULL
        ))
      }), M, stub = stub_for_names)      
      aux_name <- lapply(family, .rename_aux)
      prior_list$priorLong_aux <- list_nms(lapply(1:M, function(m) {
        if (is.na(aux_name[[m]])) NULL else with(user_priorLong_aux[[m]], list(
          dist = prior_dist_name,
          location = if (!is.na(prior_dist_name) && 
                         prior_dist_name != "exponential")
            prior_mean else NULL,
          scale = if (!is.na(prior_dist_name) && 
                      prior_dist_name != "exponential")
            prior_scale else NULL,
          adjusted_scale = if (rescaled_auxLong[m])
            adjusted_priorLong_aux_scale[[m]] else NULL,
          df = if (!is.na(prior_dist_name) && 
                   prior_dist_name %in% "student_t")
            prior_df else NULL, 
          rate = if (!is.na(prior_dist_name) && 
                     prior_dist_name %in% "exponential")
            1 / prior_scale else NULL,
          aux_name = aux_name[[m]]
        ))
      }), M, stub = stub_for_names)     
    }
    
    if (!is.null(user_priorEvent)) {
      rescaled_coefEvent <- check_if_rescaled(user_priorEvent, e_has_predictors,
                                              adjusted_priorEvent_scale)
      rescaled_intEvent  <- check_if_rescaled(user_priorEvent_intercept, e_has_intercept, 
                                              adjusted_priorEvent_intercept_scale)
      rescaled_auxEvent  <- check_if_rescaled(user_priorEvent_aux, TRUE, 
                                              adjusted_priorEvent_aux_scale)
      user_priorEvent <- 
        rename_t_and_cauchy(user_priorEvent, e_has_predictors)  
      user_priorEvent_intercept <- 
        rename_t_and_cauchy(user_priorEvent_intercept, e_has_intercept)  
      user_priorEvent_aux <- 
        rename_t_and_cauchy(user_priorEvent_aux, TRUE)     
      prior_list$priorEvent <-
        if (!e_has_predictors) NULL else with(user_priorEvent, list(
          dist = prior_dist_name,
          location = prior_mean,
          scale = prior_scale,
          adjusted_scale = if (rescaled_coefEvent)
            adjusted_priorEvent_scale else NULL,
          df = if (prior_dist_name %in% c
                   ("student_t", "hs", "hs_plus", "lasso", "product_normal"))
            prior_df else NULL
        ))
      prior_list$priorEvent_intercept <-
        if (!e_has_intercept) NULL else with(user_priorEvent_intercept, list(
          dist = prior_dist_name,
          location = prior_mean,
          scale = prior_scale,
          adjusted_scale = if (rescaled_intEvent)
            adjusted_priorEvent_intercept_scale else NULL,
          df = if (prior_dist_name %in% "student_t")
            prior_df else NULL
        ))
      e_aux_name <- .rename_e_aux(basehaz) 
      prior_list$priorEvent_aux <-
        with(user_priorEvent_aux, list(
          dist = prior_dist_name,
          location = prior_mean,
          scale = prior_scale,
          adjusted_scale = if (rescaled_auxEvent)
            adjusted_priorEvent_aux_scale else NULL,
          df = if (!is.na(prior_dist_name) && 
                   prior_dist_name %in% "student_t")
            prior_df else NULL, 
          aux_name = e_aux_name
        ))      
    }
    
    if (!is.null(user_priorEvent_assoc)) {
      rescaled_coefAssoc <- check_if_rescaled(user_priorEvent_assoc, has_assoc, 
                                              adjusted_priorEvent_assoc_scale)
      user_priorEvent_assoc <- rename_t_and_cauchy(user_priorEvent_assoc, has_assoc)        
      prior_list$priorEvent_assoc <-
        if (!has_assoc) NULL else with(user_priorEvent_assoc, list(
          dist = prior_dist_name,
          location = prior_mean,
          scale = prior_scale,
          adjusted_scale = if (rescaled_coefAssoc)
            adjusted_priorEvent_assoc_scale else NULL,
          df = if (prior_dist_name %in% c
                   ("student_t", "hs", "hs_plus", "lasso", "product_normal"))
            prior_df else NULL
        ))
    }
    
    if (length(user_prior_covariance)) {
      if (user_prior_covariance$dist == "decov") {
        prior_list$prior_covariance <- user_prior_covariance
      } else if (user_prior_covariance$dist == "lkj") {
        # lkj prior for correlation matrix
        prior_list$prior_covariance <- user_prior_covariance
        # half-student_t prior on SD for each ranef (possibly autoscaled)
        prior_list$prior_covariance$df <- b_user_prior_stuff$prior_df
        prior_list$prior_covariance$scale <- b_user_prior_stuff$prior_scale
        adj_scales <- uapply(b_prior_stuff, FUN = uapply, '[[', "prior_scale")
        if (!all(b_user_prior_stuff$prior_scale == adj_scales)) {
          prior_list$prior_covariance$adjusted_scale <- adj_scales
        } else {
          prior_list$prior_covariance$adjusted_scale <- NULL
        }
      } else {
        prior_list$prior_covariance <- NULL
      }
    }
    
    if (!stub_for_names == "Long") {
      nms <- names(prior_list)
      new_nms <- gsub("Long", "", nms)
      names(prior_list) <- new_nms
    }
    
    return(prior_list)
  }

# Get name of auxiliary parameters for event submodel
#
# @param basehaz A list with information about the baseline hazard
.rename_e_aux <- function(basehaz) {
  nm <- basehaz$type_name
  if (nm == "weibull") "weibull-shape" else
    if (nm == "bs") "spline-coefficients" else
      if (nm == "piecewise") "piecewise-coefficients" else NA
}

# Check if priors were autoscaled
#
# @param prior_stuff A list with prior info returned by handle_glm_prior
# @param has A logical checking, for example, whether the model has_predictors, 
#   has_intercept, has_assoc, etc
# @param adjusted_prior_scale The prior scale after any autoscaling
check_if_rescaled <- function(prior_stuff, has, adjusted_prior_scale) {
  prior_stuff$prior_autoscale && has &&
    !is.na(prior_stuff$prior_dist_name) &&
    !all(prior_stuff$prior_scale == adjusted_prior_scale)      
}

# Rename the t prior as being student-t or cauchy
#
# @param prior_stuff A list with prior info returned by handle_glm_prior
# @param has A logical checking, for example, whether the model has_predictors, 
#   has_intercept, has_assoc, etc
rename_t_and_cauchy <- function(prior_stuff, has) {
  if (has && prior_stuff$prior_dist_name %in% "t") {
    if (all(prior_stuff$prior_df == 1)) {
      prior_stuff$prior_dist_name <- "cauchy"
    } else {
      prior_stuff$prior_dist_name <- "student_t"
    }
  }
  return(prior_stuff)
}

#--------------- Functions related to longitudinal submodel

# Construct a list with information on the glmer submodel
#
# @param formula The model formula for the glmer submodel.
# @param data The data for the glmer submodel.
# @param family The family object for the glmer submodel.
# @return A named list with the following elements:
#   y: named list with the reponse vector and related info.
#   x: named list with the fe design matrix and related info.
#   z: named list with the re design matrices and related info.
#   terms: the model.frame terms object with bars "|" replaced by "+".
#   model_frame: The model frame with all variables used in the 
#     model formula.
#   formula: The model formula.
#   reTrms: returned by lme4::glFormula$reTrms.
#   family: the (modified) family object for the glmer submodel.
#   intercept_type: named list with info about the type of 
#     intercept required for the glmer submodel.
#   has_aux: logical specifying whether the glmer submodel 
#     requires an auxiliary parameter.
handle_y_mod <- function(formula, data, family) {
  mf <- stats::model.frame(lme4::subbars(formula), data)
  if (!length(formula) == 3L)
    stop2("An outcome variable must be specified.")
  
  # lme4 parts
  lme4_parts <- lme4::glFormula(formula, data)
  reTrms <- lme4_parts$reTrms
  
  # Response vector, design matrices
  y <- make_y_for_stan(formula, mf, family) 
  x <- make_x_for_stan(formula, mf)
  z <- make_z_for_stan(formula, mf) 
  
  # Terms
  terms <- attr(mf, "terms")
  terms <- append_predvars_attribute(terms, formula, data)
  
  # Binomial with >1 trials not allowed by stan_{mvmver,jm}
  is_binomial <- is.binomial(family$family)
  is_bernoulli <- is_binomial && NCOL(y$y) == 1L && all(y$y %in% 0:1)
  if (is_binomial && !is_bernoulli)
    STOP_binomial()
  
  # Various flags
  intercept_type <- check_intercept_type(x, family)
  has_aux <- check_for_aux(family)
  family <- append_mvmer_famlink(family, is_bernoulli)
  
  nlist(y, x, z, reTrms, model_frame = mf, formula, terms, 
        family, intercept_type, has_aux)
}

# Return the response vector for passing to Stan
#
# @param formula The model formula
# @param model_frame The model frame
# @param family A family object
# @return A named list with the following elements:
#   y: the response vector
#   real: the response vector if real, else numeric(0)
#   integer: the response vector if integer, else integer(0)
#   resp_type: 1L if response is real, 2L is response is integer
make_y_for_stan <- function(formula, model_frame, family) {
  y <- as.vector(model.response(model_frame))
  y <- validate_glm_outcome_support(y, family)
  resp_type <- if (check_response_real(family)) 1L else 2L
  real    <- if (resp_type == 1L) y else numeric(0) 
  integer <- if (resp_type == 2L) y else integer(0) 
  nlist(y, real, integer, resp_type)
}

# Return the design matrix for passing to Stan
#
# @param formula The model formula.
# @param model_frame The model frame.
# @return A named list with the following elements:
#   x: the fe model matrix, not centred and may have intercept.
#   xtemp: fe model matrix, centred and no intercept.
#   x_form: the formula for the fe model matrix.
#   x_bar: the column means of the model matrix.
#   has_intercept: logical for whether the submodel has an intercept
#   N,K: number of rows (observations) and columns (predictors) in the
#     fixed effects model matrix
make_x_for_stan <- function(formula, model_frame) {
  x_form <- lme4::nobars(formula)
  x <- model.matrix(x_form, model_frame)
  has_intercept <- check_for_intercept(x, logical = TRUE)
  xtemp <- drop_intercept(x)
  x_bar <- colMeans(xtemp)
  xtemp <- sweep(xtemp, 2, x_bar, FUN = "-")
  # identify any column of x with < 2 unique values (empty interaction levels)
  sel <- (2 > apply(xtemp, 2L, function(x) length(unique(x))))
  if (any(sel))
    stop2("Cannot deal with empty interaction levels found in columns: ",
            paste(colnames(xtemp)[sel], collapse = ", "))
  nlist(x, xtemp, x_form, x_bar, has_intercept, N = NROW(xtemp), K = NCOL(xtemp))
}

# Return design matrices for the group level terms for passing to Stan
#
# @param formula The model formula
# @param model_frame The model frame
# @return A named list with the following elements:
#   z: a list with each element containing the random effects model 
#     matrix for one grouping factor.
#   z_forms: a list with each element containing the model formula for 
#     one grouping factor.
#   group_vars: a character vector with the name of each of the
#     grouping factors
#   group_cnms: a list with each element containing the names of the
#     group level parameters for one grouping factor
#   group_list: a list with each element containing the vector of group 
#     IDs for the rows of z
#   nvars: a vector with the number of group level parameters for each
#     grouping factor
#   ngrps: a vector with the number of groups for each grouping factor 
make_z_for_stan <- function(formula, model_frame) {
  bars <- lme4::findbars(formula)
  if (length(bars) > 2L)
    stop2("A maximum of 2 grouping factors are allowed.")
  z_parts <- lapply(bars, split_at_bars)
  z_forms <- fetch(z_parts, "re_form")
  z <- lapply(z_forms, model.matrix, model_frame)
  group_cnms <- lapply(z, colnames)
  group_vars <- fetch(z_parts, "group_var")
  group_list <- lapply(group_vars, function(x) factor(model_frame[[x]]))
  nvars <- lapply(group_cnms, length)
  ngrps <- lapply(group_list, n_distinct)
  names(z) <- names(z_forms) <- names(group_cnms) <- 
    names(group_list) <- names(nvars) <- names(ngrps) <- group_vars
  nlist(z, z_forms, group_vars, group_cnms, group_list, nvars, ngrps)
}

# Return info on the required type of intercept
#
# @param X The model matrix
# @param family A family object
# @return A named list with the following elements:
#   type: character string specifying the type of bounds to use
#     for the intercept.
#   number: an integer specifying the type of bounds to use
#     for the intercept where 0L = no intercept, 1L = no bounds 
#     on intercept, 2L = lower bound, 3L = upper bound.
check_intercept_type <- function(X, family) {
  fam <- family$family
  link <- family$link
  if (!X$has_intercept) { # no intercept
    type <- "none"
    needs_intercept <- 
      (!is.gaussian(fam) && link == "identity") ||
      (is.gamma(fam) && link == "inverse") ||
      (is.binomial(fam) && link == "log")
    if (needs_intercept)
      stop2("To use the specified combination of family and link (", fam, 
            ", ", link, ") the model must have an intercept.")
  } else if (fam == "binomial" && link == "log") { # binomial, log
    type <- "upper_bound" 
  } else if (fam == "binomial") { # binomial, !log
    type <- "no_bound"
  } else if (link == "log") { # gamma/inv-gaus/poisson/nb, log
    type <- "no_bound"  
  } else if (fam == "gaussian") { # gaussian, !log
    type <- "no_bound"  
  } else { # gamma/inv-gaus/poisson/nb, !log 
    type <- "lower_bound"  
  }
  number <- switch(type, none = 0L, no_bound = 1L,
                   lower_bound = 2L, upper_bound = 3L)
  nlist(type, number) 
}

# Check the id_var argument is valid and is included appropriately in the
# formulas for each of the longitudinal submodels
#
# @param id_var The character string that the user specified for the id_var
#   argument -- will have been set to NULL if the argument was missing.
# @param y_cnms A list of length M with the cnms for each longitudinal submodel
# @param y_flist A list of length M with the flist for each longitudinal submodel
# @return Returns the character string corresponding to the appropriate id_var.
#   This will either be the user specified id_var argument or the only grouping
#   factor.
check_id_var <- function(id_var, y_cnms, y_flist) {
  len_cnms <- sapply(y_cnms, length)
  if (any(len_cnms > 1L)) {  # more than one grouping factor
    if (is.null(id_var)) {
      stop("'id_var' must be specified when using more than one grouping factor",
           call. = FALSE)
    } else {
      lapply(y_cnms, function(x)  if (!(id_var %in% names(x)))
        stop("'id_var' must be included as a grouping factor in each ",
             "of the longitudinal submodels", call. = FALSE)) 
    }
    return(id_var)
  } else {  # only one grouping factor (assumed to be subject ID)
    only_cnm <- unique(sapply(y_cnms, names))
    if (length(only_cnm) > 1L)
      stop("The grouping factor (ie, subject ID variable) is not the ",
           "same in all longitudinal submodels", call. = FALSE)
    if ((!is.null(id_var)) && (!identical(id_var, only_cnm)))
      warning("The user specified 'id_var' (", paste(id_var), 
              ") and the assumed ID variable based on the single ",
              "grouping factor (", paste(only_cnm), ") are not the same; ", 
              "'id_var' will be ignored", call. = FALSE, immediate. = TRUE)
    return(only_cnm)
  }
}

# Check the family and link function are supported by stan_{mvmer,jm}
#
# @param family A family object
# @param supported_families A character vector of supported family names
# @return A family object
validate_famlink <- function(family, supported_families) {
  famname <- family$family
  fam <- which(supported_families == famname)
  if (!length(fam)) 
    stop2("'family' must be one of ", paste(supported_families, collapse = ", "))
  supported_links <- supported_glm_links(famname)
  link <- which(supported_links == family$link)
  if (!length(link)) 
    stop("'link' must be one of ", paste(supported_links, collapse = ", "))
  return(family)
}

# Append a family object with numeric family and link information used by Stan
#
# @param family The existing family object
# @param is_bernoulli Logical specifying whether the family should be bernoulli
# @return A family object with two appended elements: 
#   mvmer_family: an integer telling Stan which family
#   mvmer_link: an integer telling Stan which link function (varies by family!)
append_mvmer_famlink <- function(family, is_bernoulli = FALSE) {
  famname <- family$family
  family$mvmer_family <- switch(
    famname, 
    gaussian = 1L, 
    Gamma = 2L,
    inverse.gaussian = 3L,
    binomial = 5L, # bernoulli = 4L changed later
    poisson = 6L,
    "neg_binomial_2" = 7L)
  if (is_bernoulli)
    family$mvmer_family <- 4L
  supported_links <- supported_glm_links(famname)
  link <- which(supported_links == family$link)
  family$mvmer_link <- link
  return(family)
}

# Split the random effects part of a model formula into
#   - the formula part (ie. the formula on the LHS of "|"), and 
#   - the name of the grouping factor (ie. the variable on the RHS of "|")
#
# @param x Random effects part of a model formula, as returned by lme4::findbars
# @return A named list with the following elements:
#   re_form: a formula specifying the random effects structure
#   group_var: the name of the grouping factor
split_at_bars <- function(x) {
  terms <- strsplit(deparse(x, 500), "\\s\\|\\s")[[1L]]
  if (!length(terms) == 2L)
    stop2("Could not parse the random effects formula.")
  re_form <- formula(paste("~", terms[[1L]]))
  group_var <- terms[[2L]]
  nlist(re_form, group_var)
}

# Function to check if the response vector is real or integer
#
# @param family A family object
# @return A logical specify whether the response is real (TRUE) or integer (FALSE)
check_response_real <- function(family) {
  !(family$family %in% c("binomial", "poisson", "neg_binomial_2"))
}

# Function to check if the submodel should include a auxiliary term
#
# @param family A family object
# @return A logical specify whether the submodel includes a auxiliary term
check_for_aux <- function(family) {
  !(family$family %in% c("binomial", "poisson"))
}

# Function to return a single cnms object for all longitudinal submodels
#
# @param x A list, with each element being a cnms object returned by (g)lmer
get_common_cnms <- function(x, stub = "Long") {
  nms <- lapply(x, names)
  unique_nms <- unique(unlist(nms))
  cnms <- lapply(seq_along(unique_nms), function(i) {
    nm <- unique_nms[i]
    unlist(lapply(1:length(x), function(m) 
      if (nm %in% nms[[m]]) paste0(stub, m, "|", x[[m]][[nm]])))
  })
  names(cnms) <- unique_nms
  cnms
}

# Function to return a single list with the factor levels for each
# grouping factor, but collapsed across all longitudinal submodels
# 
# @param x A list containing the flist object for each of the submodels
get_common_flevels <- function(x) {
  nms <- lapply(x, names)
  unique_nms <- unique(unlist(nms))
  flevels <- lapply(seq_along(unique_nms), function(i) {
    nm <- unique_nms[i]
    flevels_nm <- lapply(1:length(x), function(m) 
      if (nm %in% nms[[m]]) levels(x[[m]][[nm]]))
    flevels_nm <- rm_null(unique(flevels_nm))
    if (length(flevels_nm) > 1L)
      stop2("The group factor levels must be the same for all submodels.")
    flevels_nm[[1L]]
  })
  names(flevels) <- unique_nms
  flevels
}

# Take a list of cnms objects (each element containing the cnms for one 
# submodel) and assess whether the specified variable is included as a 
# grouping factor in all of the submodels
#
# @param y_cnms A list with each element containing the cnms object for
#   one submodel.
# @param group_var The name of the grouping factor variable.
# @return The name of the grouping factor, or an error if it doesn't 
#   appear in every submodel.
validate_grouping_factor <- function(y_cnms, group_var) {
  check <- sapply(y_cnms, function(x) group_var %in% names(x))
  if (!all(check)) {
    nm <- deparse(substitute(group_var))
    stop2(nm, " must be a grouping factor in all longitudinal submodels.")
  }
  group_var
}

# Check the factor list corresponding to subject ID is the same in each 
# of the longitudinal submodels
#
# @param id_var The name of the ID variable
# @param y_flist A list containing the flist objects returned for each 
#   separate longitudinal submodel
# @return A vector of factor levels corresponding to the IDs appearing
#   in the longitudinal submodels
check_id_list <- function(id_var, y_flist) {
  id_list <- unique(lapply(y_flist, function(x) levels(x[[id_var]])))
  if (length(id_list) > 1L)
    stop2("The subject IDs are not the same in all longitudinal submodels.")
  unlist(id_list)  
}

# Take the model frame terms object and append with attributes
# that provide the predvars for the fixed and random effects 
# parts, based on the model formula and data
#
# @param terms The existing model frame terms object
# @param formula The formula that was used to build the model frame
#   (but prior to having called lme4::subbars on it!)
# @param data The data frame that was used to build the model frame
# @return A terms object with predvars.fixed and predvars.random as
#   additional attributes
append_predvars_attribute <- function(terms, formula, data) {
  fe_form <- lme4::nobars(formula)
  re_form <- lme4::subbars(justRE(formula, response = TRUE))
  fe_frame <- stats::model.frame(fe_form, data)
  re_frame <- stats::model.frame(re_form, data)
  fe_terms <- attr(fe_frame, "terms")
  re_terms <- attr(re_frame, "terms")
  fe_predvars <- attr(fe_terms, "predvars")
  re_predvars <- attr(re_terms, "predvars")
  attr(terms, "predvars.fixed")  <- attr(fe_terms, "predvars")
  attr(terms, "predvars.random") <- attr(re_terms, "predvars")
  terms
}

# Function to substitute variables in the formula of a fitted model
# with the corresponding predvars based on the terms object for the model.
# (This is useful since lme4::glFormula doesn't allow a terms object to be 
# passed as the first argument instead of a model formula).
#
# @param mod A (g)lmer model object from which to extract the formula and terms
# @return A reformulated model formula with variables replaced by predvars
use_predvars <- function(mod, keep_response = TRUE) {
  fm <- formula(mod)
  ff <- lapply(attr(terms(mod, fixed.only  = TRUE), "variables"), deparse, 500)[-1]
  fr <- lapply(attr(terms(mod, random.only = TRUE), "variables"), deparse, 500)[-1]
  pf <- lapply(attr(terms(mod, fixed.only  = TRUE), "predvars"),  deparse, 500)[-1]
  pr <- lapply(attr(terms(mod, random.only = TRUE), "predvars"),  deparse, 500)[-1]
  if (!identical(c(ff, fr), c(pf, pr))) {
    for (j in 1:length(ff))
      fm <- gsub(ff[[j]], pf[[j]], fm, fixed = TRUE)    
    for (j in 1:length(fr))
      fm <- gsub(fr[[j]], pr[[j]], fm, fixed = TRUE)    
  }
  rhs <- fm[[length(fm)]]
  if (is(rhs, "call")) 
    rhs <- deparse(rhs, 500L)
  if (keep_response && length(fm) == 3L) {
    fm <- reformulate(rhs, response = formula(mod)[[2L]])
  } else if (keep_response && length(fm) == 2L) {
    warning2("No response variable found, reformulating RHS only.")
    fm <- reformulate(rhs, response = NULL)
  } else {
    fm <- reformulate(rhs, response = NULL)
  }
  fm
}

# Check that the observation times for the longitudinal submodel are all
# positive and not observed after the individual's event time
#
# @param data A data frame (data for one longitudinal submodel)
# @param eventtimes A named numeric vector with the event time for each
#   individual. The vector names should be the individual ids.
# @param id_var,time_var The ID and time variable in the longitudinal data.
# @return Nothing.
validate_observation_times <-function(data, eventtimes, id_var, time_var) {
  if (!time_var %in% colnames(data)) 
    STOP_no_var(time_var)
  if (!id_var %in% colnames(data)) 
    STOP_no_var(id_var)
  if (any(data[[time_var]] < 0))
    stop2("Values for the time variable (", time_var, ") should not be negative.")
  mt <- tapply(data[[time_var]], factor(data[[id_var]]), max)  # max observation time
  nms <- names(eventtimes)                                     # patient IDs
  if (is.null(nms))
    stop2("Bug found: cannot find names in the vector of event times.")
  sel <- which(sapply(nms, FUN = function(i) mt[i] > eventtimes[i]))
  if (length(sel))
    stop2("The following individuals have observation times in the longitudinal data ",
          "are later than their event time: ", paste(nms[sel], collapse = ", "))      
}


#--------------- Functions related to event submodel

# Construct a list with information on the event submodel
#
# @param formula The model formula for the event submodel
# @param data The data for the event submodel
# @param qnodes An integer specifying the number of GK quadrature nodes
# @param id_var The name of the ID variable
# @param y_id_list A character vector with a unique list of subject IDs 
#   (factor levels) that appeared in the longitudinal submodels
# @return A named list with the following elements:
#   mod: The fitted Cox model.
#   entrytime: Named vector of numeric entry times.
#   eventtime: Named vector of numeric event times.
#   status: Named vector of event/failure indicators.
#   Npat: Number of individuals.
#   Nevents: Total number of events/failures.
#   id_list: A vector of unique subject IDs, as a factor.
#   qnodes: The number of GK quadrature nodes.
#   qwts,qpts: Vector of unstandardised quadrature weights and points.
#     The vector is ordered such that the first Npat items are the
#     weights/locations of the first quadrature point, then the second
#     Npat items are the weights/locations for the second quadrature
#     point, and so on. 
#   qids: The subject IDs corresponding to each element of qwts/qpts.
#   epts: The event times, but only for individuals who were NOT censored
#     (i.e. those individual who had an event).
#   eids: The subject IDs corresponding to each element of epts.
#   cpts: Combined vector of failure and quadrature times: c(epts, qpts).
#   cids: Combined vector subject IDs: c(eids, qids).
#   Xq: The model matrix for the event submodel, centred and no intercept.
#   Xbar: Vector of column means for the event submodel model matrix.
#   K: Number of predictors for the event submodel.
#   norm_const: Scalar, the constant used to shift the event submodel
#     linear predictor (equal to the log of the mean incidence rate). 
#   model_frame: The model frame for the fitted Cox model, but with the
#     subject ID variable also included.
#   tvc: Logical, if TRUE then a counting type Surv() object was used
#     in the fitted Cox model (ie. time varying covariates). 
handle_e_mod <- function(formula, data, qnodes, id_var, y_id_list) {
  if (!requireNamespace("survival"))
    stop("the 'survival' package must be installed to use this function")
  if (!requireNamespace("data.table"))
    stop("the 'data.table' package must be installed to use this function")
  
  mod <- survival::coxph(formula, data = data, x = TRUE)
  RHS_with_id <- paste(deparse(formula[[3L]]), "+", id_var)
  formula_with_id <- reformulate(RHS_with_id, response = formula[[2L]])
  mf1 <- model.frame(formula_with_id, data = data)
  mf1[[id_var]] <- promote_to_factor(mf1[[id_var]]) # same as lme4
  mf2 <- unclass_Surv_column(mf1) 
  if (attr(mod$y, "type") == "counting") {
    tvc <- TRUE; t0_var <- "start"; t1_var <- "stop"
  } else if (attr(mod$y, "type") == "right") {
    tvc <- FALSE; t0_var <- "time"; t1_var <- "time"
  } else {
    stop2("Only 'right' or 'counting' type Surv objects are allowed ", 
          "on the LHS of 'formulaEvent'.")
  }
  
  # Split model frame and find event time and status
  mf_by_id <- split(mf2, mf2[, id_var])
  mf_entry <- do.call(rbind, lapply(
    mf_by_id, FUN = function(x) x[which.min(x[, t0_var]), ]))
  mf_event <- do.call(rbind, lapply(
    mf_by_id, FUN = function(x) x[which.max(x[, t1_var]), ]))
  entrytime <- mf_entry[[t0_var]]
  if (tvc && (any(entrytime) > 0))
    warning("Note that delayed entry is not yet implemented. It will ",
            "be assumed that all individuals were at risk from time 0.")
  entrytime <- rep(0, length(entrytime)) # no delayed entry
  eventtime <- mf_event[[t1_var]]
  status    <- mf_event[["status"]]  
  id_list   <- factor(mf_event[[id_var]])
  names(entrytime) <- names(eventtime) <- names(status) <- id_list
  
  # Mean log incidence rate - used for shifting log baseline hazard
  norm_const <- log(sum(status) / sum(eventtime))
  
  # Error checks for the ID variable
  if (!identical(y_id_list, levels(factor(id_list))))
    stop2("The patient IDs (levels of the grouping factor) included ",
          "in the longitudinal and event submodels do not match")
  if (is.unsorted(factor(id_list)))
    stop2("'dataEvent' needs to be sorted by the subject ",
          "ID/grouping variable")
  if (!identical(length(y_id_list), length(id_list)))
    stop2("The number of patients differs between the longitudinal and ",
          "event submodels. Perhaps you intended to use 'start/stop' notation ",
          "for the Surv() object.")
  
  # Quadrature weights/times/ids
  qq <- get_quadpoints(qnodes)
  qwts <- uapply(qq$weights, unstandardise_qwts, entrytime, eventtime)
  qpts <- uapply(qq$points, unstandardise_qpts, entrytime, eventtime)
  qids <- rep(id_list, qnodes)
  
  # Event times/ids (for failures only)
  epts <- eventtime[status == 1] # event times (for failures only)
  eids <- id_list[status == 1]   # subject ids (for failures only)
  
  # Both event times/ids and quadrature times/ids
  cpts <- c(epts, qpts)
  cids <- unlist(list(eids, qids)) # NB using c(.) demotes factors to integers
  
  # Evaluate design matrix at event and quadrature times
  if (ncol(mod$x)) {
    # Convert model frame from Cox model into a data.table
    dt <- prepare_data_table(mf2, id_var = id_var, time_var = t0_var)
    # Obtain rows of the model frame that are as close as possible to 
    # the event times (failures only) and quadrature times                      
    mf2 <- rolling_merge(dt, ids = cids, times = cpts)
    # Construct design matrix evaluated at event and quadrature times
    fm_RHS <- reformulate(attr(terms(mod), "term.labels"))
    Xq <- model.matrix(fm_RHS, data = mf2)
    Xq <- Xq[, -1L, drop = FALSE] # drop intercept
    # Centre the design matrix
    Xbar <- colMeans(Xq)
    Xq <- sweep(Xq, 2, Xbar, FUN = "-")
    sel <- (2 > apply(Xq, 2L, function(x) length(unique(x))))
    if (any(sel)) {
      # drop any column of x with < 2 unique values (empty interaction levels)
      warning("Dropped empty interaction levels: ",
              paste(colnames(Xq)[sel], collapse = ", "))
      Xq <- Xq[, !sel, drop = FALSE]
      Xbar <- Xbar[!sel]
    }
  } else {
    Xq <- matrix(0,0L,0L)
    Xbar <- rep(0,0L)
  }
  
  nlist(mod, entrytime, eventtime, status, Npat = length(eventtime), 
        Nevents = sum(status), id_list, qnodes, qwts, qpts, qids, 
        epts, eids, cpts, cids, Xq, Xbar, K = ncol(Xq), norm_const, 
        model_frame = mf1, tvc)
}

# Deal with the baseline hazard
#
# @param basehaz A string specifying the type of baseline hazard
# @param basehaz_ops A named list with elements df, knots 
# @param ok_basehaz A list of admissible baseline hazards
# @param eventtime A numeric vector with eventtimes for each individual
# @param status A numeric vector with event indicators for each individual
# @return A named list with the following elements:
#   type: integer specifying the type of baseline hazard, 1L = weibull,
#     2L = b-splines, 3L = piecewise.
#   type_name: character string specifying the type of baseline hazard.
#   user_df: integer specifying the input to the df argument
#   df: integer specifying the number of parameters to use for the 
#     baseline hazard.
#   knots: the knot locations for the baseline hazard.
#   bs_basis: The basis terms for the B-splines. This is passed to Stan
#     as the "model matrix" for the baseline hazard. It is also used in
#     post-estimation when evaluating the baseline hazard for posterior
#     predictions since it contains information about the knot locations
#     for the baseline hazard (this is implemented via splines::predict.bs). 
handle_basehaz <- function(basehaz, basehaz_ops, 
                           ok_basehaz = nlist("weibull", "bs", "piecewise"),
                           ok_basehaz_ops = nlist("df", "knots"),
                           eventtime, status) {
  
  if (!basehaz %in% unlist(ok_basehaz))
    stop("The baseline hazard should be one of ", paste(names(ok_basehaz), collapse = ", "))
  if (!all(names(basehaz_ops) %in% unlist(ok_basehaz_ops)))
    stop("The baseline hazard options list can only include ", paste(names(ok_basehaz_ops), collapse = ", "))
  
  type <- switch(basehaz, weibull = 1L, bs = 2L, piecewise = 3L)
  type_name <- basehaz
  user_df   <- basehaz_ops$df
  df        <- basehaz_ops$df
  knots     <- basehaz_ops$knots
  bs_basis  <- NULL
  
  if (type_name == "weibull") {
    # handle df and knots
    if (!is.null(df))
      warning("'df' will be ignored since baseline hazard was set to weibull.", 
              immediate. = TRUE, call. = FALSE)
    if (!is.null(knots))
      warning("'knots' will be ignored since baseline hazard was set to weibull.", 
              immediate. = TRUE, call. = FALSE) 
    user_df <- NULL
    df      <- 1L
    knots   <- NULL
  } else if (type_name %in% c("bs", "piecewise")) {
    # handle df and knots
    if (!any(is.null(df), is.null(knots))) { 
      # both specified
      stop("Cannot specify both 'df' and 'knots' for the baseline hazard.", call. = FALSE)
    } else if (all(is.null(df), is.null(knots))) { 
      # both null -- use default df
      user_df <- df <- 6L
      knots <- NULL
    } else if (!is.null(df)) { 
      # only df specified
      if (type == 2L) {
        if (df < 3) stop("'df' must be at least 3 for B-splines baseline hazard.")
        user_df <- df <- df + 1
      }
    } else if (!is.null(knots)) {          
      # only knots specified
      if (!is.numeric(knots)) stop("'knots' vector must be numeric", call. = FALSE)
      if (any(knots < 0)) stop("'knots' must be non-negative", call. = FALSE)      
      if (type == 2L) df <- length(knots) + 4
      else if (type == 3L) df <- length(knots) + 1
    } else {
      stop("Bug found: unable to reconcile 'df' and 'knots' arguments.", call. = FALSE) 
    }
  }  
  
  # Evaluate spline basis (knots, df, etc) based on distribution of observed event times
  # or evaluate cut points for piecewise constant baseline hazard
  if (type == 2L) {
    bs_basis <- splines::bs(eventtime[(status > 0)], df = user_df, knots = knots, 
                            Boundary.knots = c(0, max(eventtime)), intercept = TRUE)
  } else if (type == 3L) {
    if (is.null(knots)) {
      knots <- quantile(eventtime[(status > 0)], probs = seq(0, 1, 1 / df))
      knots[[1]] <- 0
      knots[[length(knots)]] <- max(eventtime)
    } else {
      if (any(knots > max(eventtime)))
        stop("'knots' for the baseline hazard cannot be greater than the ",
             "largest event time.", call. = FALSE)
      knots <- c(0, knots, max(eventtime))
    }
  }  
  
  nlist(type, type_name, user_df, df, knots, bs_basis)   
}

# Return the design matrix for the baseline hazard
#
# @param times A vector of times at which to evaluate the baseline hazard
# @param basehaz A named list with info about the baseline hazard,
#   returned by a call to handle_basehaz
# @return A matrix
make_basehaz_X <- function(times, basehaz) {
  if (basehaz$type_name == "weibull") {
    X <- matrix(log(times), nrow = length(times), ncol = 1) 
  } else if (basehaz$type_name == "bs") {
    basis <- basehaz$bs_basis
    if (is.null(basis))
      stop2("Bug found: could not find info on B-splines basis terms.")
    X <- as.array(predict(basis, times)) 
  } else if (basehaz$type_name == "piecewise") {
    knots <- basehaz$knots
    df <- basehaz$df
    if (is.null(knots) || is.null(df))
      stop2("Bug found: could not find info on basehaz df and knot locations.")
    times_quantiles <- cut(times, knots, include.lowest = TRUE, labels = FALSE)
    X <- matrix(NA, length(times_quantiles), df)
    for (i in 1:df) 
      X[, i] <- ifelse(times_quantiles == i, 1, 0)
    X <- as.array(X)
  } else {
    stop2("Bug found: type of baseline hazard unknown.") 
  }
  X
}

# Function to return standardised GK quadrature points and weights
#
# @param nodes The required number of quadrature nodes
# @return A list with two named elements (points and weights) each
#   of which is a numeric vector with length equal to the number of
#   quadrature nodes
get_quadpoints <- function(nodes = 15) {
  if (!is.numeric(nodes) || (length(nodes) > 1L)) {
    stop("'qnodes' should be a numeric vector of length 1.")
  } else if (nodes == 15) {
    list(
      points = c(
        -0.991455371120812639207,
        -0.949107912342758524526,
        -0.86486442335976907279,
        -0.7415311855993944398639,
        -0.5860872354676911302941,
        -0.4058451513773971669066,
        -0.2077849550078984676007,
        0,
        0.2077849550078984676007,
        0.405845151377397166907,
        0.5860872354676911302941,
        0.741531185599394439864,
        0.86486442335976907279,
        0.9491079123427585245262,
        0.991455371120812639207),
      weights = c(
        0.0229353220105292249637,
        0.063092092629978553291,
        0.10479001032225018384,
        0.140653259715525918745,
        0.1690047266392679028266,
        0.1903505780647854099133,
        0.204432940075298892414,
        0.209482141084727828013,
        0.204432940075298892414,
        0.1903505780647854099133,
        0.169004726639267902827,
        0.140653259715525918745,
        0.1047900103222501838399,
        0.063092092629978553291,
        0.0229353220105292249637))      
  } else if (nodes == 11) {
    list(
      points = c(
        -0.984085360094842464496,
        -0.906179845938663992798,
        -0.754166726570849220441,
        -0.5384693101056830910363,
        -0.2796304131617831934135,
        0,
        0.2796304131617831934135,
        0.5384693101056830910363,
        0.754166726570849220441,
        0.906179845938663992798,
        0.984085360094842464496),
      weights = c(
        0.042582036751081832865,
        0.1152333166224733940246,
        0.186800796556492657468,
        0.2410403392286475866999,
        0.272849801912558922341,
        0.2829874178574912132043,
        0.272849801912558922341,
        0.241040339228647586701,
        0.186800796556492657467,
        0.115233316622473394025,
        0.042582036751081832865))     
  } else if (nodes == 7) {
    list(
      points = c(
        -0.9604912687080202834235,
        -0.7745966692414833770359,
        -0.4342437493468025580021,
        0,
        0.4342437493468025580021,
        0.7745966692414833770359,
        0.9604912687080202834235),
      weights = c(
        0.1046562260264672651938,
        0.268488089868333440729,
        0.401397414775962222905,
        0.450916538658474142345,
        0.401397414775962222905,
        0.268488089868333440729,
        0.104656226026467265194))      
  } else stop("'qnodes' must be either 7, 11 or 15.")  
}

# Remove the "Surv" class attribute from the first column 
# of the model frame after a survival::coxph call
#
# @param data A model frame with the first column being the Surv() response
unclass_Surv_column <- function(data) {
  cbind(unclass(data[,1]), data[, -1, drop = FALSE], stringsAsFactors = FALSE)
}

#--------------- Functions related to association structure

# Return a named list with information about the specified association structure 
# 
# @param user_x A character vector or NULL, being the user input to the
#   assoc argument (for one submodel) in the stan_jm call
# @param y_mod_stuff A list returned by a call to handle_glmod
# @param id_var The name of the ID variable 
# @param M Integer specifying the total number of longitudinal submodels
# @return A list with information about the desired association structure
validate_assoc <- function(user_x, y_mod_stuff, ok_assoc, ok_assoc_data,
                           ok_assoc_interactions, lag, id_var, M) {
  
  ok_inputs <- c(ok_assoc, paste0(ok_assoc_data, "_data"),
                 unlist(lapply(ok_assoc_interactions, paste0, "_", ok_assoc_interactions))) 
  
  # Check user input to assoc argument
  trimmed_x <- trim_assoc(user_x, ok_assoc_data, ok_assoc_interactions)
  if (is.null(user_x) || all(trimmed_x %in% ok_inputs)) {
    
    temporarily_disallowed <- c("muslope", "shared_b", "shared_coef")
    if (any(trimmed_x %in% temporarily_disallowed))
      stop2("The following association structures have been temporarily disallowed ",
            "and will be reinstated in a future release: ", 
            paste(temporarily_disallowed, collapse = ", "))
    
    assoc <- sapply(ok_inputs, `%in%`, trimmed_x, simplify = FALSE)
    if (is.null(user_x)) {
      assoc$null <- TRUE
    } else if (is.vector(user_x) && is.character(user_x)) {
      if ((assoc$null) && (length(user_x) > 1L))
        stop("In assoc, 'null' cannot be specified in conjuction ",
             "with another association type", call. = FALSE)
      STOP_combination_not_allowed(assoc, "etavalue", "muvalue")
      STOP_combination_not_allowed(assoc, "etaslope", "muslope")
      STOP_combination_not_allowed(assoc, "etaauc",   "muauc")
    } else {
      stop("'assoc' argument should be a character vector or, for a multivariate ",
           "joint model, possibly a list of character vectors.", call. = FALSE)    
    }    
  } else {
    stop("An unsupported association type has been specified. The ",
         "'assoc' argument can only include the following association ", 
         "types: ", paste(ok_assoc, collapse = ", "), ", as well as ",
         "possible interactions either between association terms or ",
         "with observed data.", call. = FALSE)  
  }
  
  # Parse suffix specifying indices for shared random effects
  cnms <- y_mod_stuff$z$group_cnms
  cnms_id <- cnms[[id_var]] # names of random effect terms
  assoc$which_b_zindex <- parse_assoc_sharedRE("shared_b",    user_x, 
                                                  max_index = length(cnms_id), cnms_id)
  assoc$which_coef_zindex <- parse_assoc_sharedRE("shared_coef", user_x, 
                                                  max_index = length(cnms_id), cnms_id)
  
  if (length(intersect(assoc$which_b_zindex, assoc$which_coef_zindex)))
    stop("The same random effects indices should not be specified in both ",
         "'shared_b' and 'shared_coef'. Specifying indices in 'shared_coef' ",
         "will include both the fixed and random components.", call. = FALSE)
  
  if (length(assoc$which_coef_zindex)) {
    if (length(cnms) > 1L)
      stop("'shared_coef' association structure cannot be used when there is ",
           "clustering at levels other than the individual-level.", call. = FALSE)
    b_nms <- names(assoc$which_coef_zindex)
    assoc$which_coef_xindex <- sapply(b_nms, function(y, beta_nms) {
      beta_match <- grep(y, beta_nms, fixed = TRUE)
      if (!length(beta_match)) {
        stop("In association structure 'shared_coef', no matching fixed effect ",
             "component could be found for the following random effect: ", y, 
             ". Perhaps consider using 'shared_b' association structure instead.")
      } else if (length(beta_match) > 1L) {
        stop("Bug found: In association structure 'shared_coef', multiple ",
             "fixed effect components have been found to match the following ",
             "random effect: ", y)
      }  
      beta_match
    }, beta_nms = colnames(y_mod_stuff$X$X))
  } else assoc$which_coef_xindex <- numeric(0)
  
  if (!identical(length(assoc$which_coef_zindex), length(assoc$which_coef_xindex)))
    stop("Bug found: the lengths of the fixed and random components of the ",
         "'shared_coef' association structure are not the same.")
  
  # Parse suffix specifying formula for interactions with data
  ok_inputs_data <- paste0(ok_assoc_data, "_data")
  assoc$which_formulas <- sapply(ok_inputs_data, parse_assoc_data, user_x, simplify = FALSE) 
  
  # Parse suffix specifying indices for interactions between association terms
  ok_inputs_interactions <- unlist(lapply(ok_assoc_interactions, paste0, "_", ok_assoc_interactions))
  assoc$which_interactions <- sapply(ok_inputs_interactions, parse_assoc_interactions, 
                                     user_x, max_index = M, simplify = FALSE)
  
  # Lag for association structure
  assoc$which_lag <- lag
  
  assoc
}

# Check whether an association structure was specified that is not allowed
# when there is an additional grouping factor clustered within patients
#
# @param has_grp Logical vector specifying where each of the 1:M submodels
#   has a grp factor clustered within patients or not.
# @param assoc A two dimensional array with information about desired association
#   structure for the joint model (returned by a call to validate_assoc). 
# @param ok_assocs_with_grp A character vector with the rownames in assoc
#   that are allowed association structures when there is a grp factor 
#   clustered within patients.
validate_assoc_with_grp <- function(has_grp, assoc, ok_assocs_with_grp) {
  all_rownames <- grep("which|null", rownames(assoc), 
                       invert = TRUE, value = TRUE)
  disallowed_rows <- setdiff(all_rownames, ok_assocs_with_grp)
  sel <- which(has_grp)
  check <- unlist(assoc[disallowed_rows, sel])
  if (any(check))
    stop2("Only the following association structures are allowed when ",
          "there is a grouping factor clustered within individuals: ",
          paste(ok_assocs_with_grp, collapse = ", "))
}

# Validate the user input to the lag_assoc argument of stan_jm
#
# @param lag_assoc The user input to the lag_assoc argument
# @param M Integer specifying the number of longitudinal submodels
validate_lag_assoc <- function(lag_assoc, M) {
  if (length(lag_assoc) == 1L)
    lag_assoc <- rep(lag_assoc, M)
  if (!length(lag_assoc) == M)
    stop2("'lag_assoc' should length 1 or length equal to the ",
          "number of markers (", M, ").")
  if (!is.numeric(lag_assoc))
    stop2("'lag_assoc' must be numeric.")
  if (any(lag_assoc < 0))
    stop2("'lag_assoc' must be non-negative.")
  lag_assoc
}

# Remove suffixes from the user inputted assoc argument
#
# @param x A character vector, being the user input to the 
#   assoc argument in the stan_jm call
# @param ok_assoc_data A character vector specifying which types
#   of association terms are allowed to be interacted with data
# @param ok_assoc_interactions A character vector specifying which types
#   of association terms are allowed to be interacted with other 
#   association terms
trim_assoc <- function(x, ok_assoc_data, ok_assoc_interactions) {
  x <- gsub("^shared_b\\(.*",    "shared_b",    x) 
  x <- gsub("^shared_coef\\(.*", "shared_coef", x) 
  for (i in ok_assoc_data)
    x <- gsub(paste0("^", i, "_data\\(.*"),    paste0(i, "_data"), x)
  for (i in ok_assoc_interactions) for (j in ok_assoc_interactions)
    x <- gsub(paste0("^", i, "_", j, "\\(.*"), paste0(i, "_", j),  x) 
  x     
}

# Parse the formula for specifying a data interaction with an association term
#
# @param x A character string corresponding to one of the allowed
#   association structures for interactions with data, for example, 
#   "etavalue_data" or "etaslope_data"
# @param user_x A character vector, being the user input to the assoc
#   argument in the stan_jm call
# @return The parsed formula (which can be used for constructing a 
#   design matrix for interacting data with association type x) or NULL
parse_assoc_data <- function(x, user_x) {
  val <- grep(paste0("^", x, ".*"), user_x, value = TRUE)
  if (length(val)) {
    val2 <- unlist(strsplit(val, x))[-1]
    fm <- tryCatch(eval(parse(text = val2)), error = function(e) 
      stop(paste0("Incorrect specification of the formula in the '", x,
                  "' association structure. See Examples in the help file."), call. = FALSE))
    if (!is(fm, "formula"))
      stop(paste0("Suffix to '", x, "' association structure should include ",
                  "a formula within parentheses."), call. = FALSE)
    if (identical(length(fm), 3L))
      stop(paste0("Formula specified for '", x, "' association structure should not ",
                  "include a response."), call. = FALSE)
    if (length(lme4::findbars(fm)))
      stop(paste0("Formula specified for '", x, "' association structure should only ",
                  "include fixed effects."), call. = FALSE)
    if (fm[[2L]] == 1)
      stop(paste0("Formula specified for '", x, "' association structure cannot ",
                  "be an intercept only."), call. = FALSE)
    return(fm)
  } else numeric(0)
}

# Parse the indices specified for shared random effects
#
# @param x A character string corresponding to one of the allowed
#   association structures for shared random effects
# @param user_x A character vector, being the user input to the assoc
#   argument in the stan_jm call
# @param max_index An integer specifying the total number of random effects
#   in the longitudinal submodel, and therefore the maximum allowed index for
#   the shared random effects
# @param cnms The names of the random effects corresponding to the 
#   individual-level (id_var) of clustering
# @return A numeric vector specifying indices for the shared random effects
parse_assoc_sharedRE <- function(x, user_x, max_index, cnms) {
  val <- grep(paste0("^", x, ".*"), user_x, value = TRUE)
  if (length(val)) {
    val2 <- unlist(strsplit(val, x))[-1]
    if (length(val2)) {
      index <- tryCatch(eval(parse(text = paste0("c", val2))), error = function(e) 
        stop("Incorrect specification of the '", x, "' association structure. ",
             "See Examples in help file.", call. = FALSE))
      if (any(index > max_index))
        stop(paste0("The indices specified for the '", x, "' association structure are ",
                    "greater than the number of subject-specific random effects."), call. = FALSE)
    } else index <- seq_len(max_index)
    names(index) <- cnms[index]
    return(index)   
  } else numeric(0)
}

# Parse the indices specified for interactions between association terms
#
# @param x A character string corresponding to one of the allowed
#   association structures
# @param user_x A character vector, being the user input to the assoc
#   argument in the stan_jm call
# @param max_index An integer specifying the maximum allowed index
# @return A numeric vector specifying indices
parse_assoc_interactions <- function(x, user_x, max_index) {
  val <- grep(paste0("^", x, ".*"), user_x, value = TRUE)
  if (length(val)) {
    val2 <- unlist(strsplit(val, x))[-1]
    if (length(val2)) {
      index <- tryCatch(eval(parse(text = paste0("c", val2))), error = function(e) 
        stop("Incorrect specification of the '", x, "' association structure. It should ",
             "include a suffix with parentheses specifying the indices of the association ",
             "terms you want to include in the interaction. See Examples in the help file.", call. = FALSE))
      if (any(index > max_index))
        stop("The indices specified for the '", x, "' association structure ",
             "cannot be greater than the number of longitudinal submodels.", call. = FALSE)     
      return(index)
    } else
      stop("Incorrect specification of the '", x, "' association structure. It should ",
           "include a suffix with parentheses specifying the indices of the association ",
           "terms you want to include in the interaction. See Examples in the help file.", call. = FALSE)
  } else numeric(0)      
}

# Make sure that interactions between association terms (for example
# etavalue_etaslope or mu_value_muvalue etc) are always ordered so that
# the first listed association term is for the submodel with the smallest
# index. For example, etavalue1_etavalue2 NOT etavalue2_etavalue1. This
# is to ensure there is no replication such as including both 
# etavalue1_etavalue2 AND etavalue2_etavalue1 when passing to Stan.
#
# @param assoc A two dimensional array with information about desired association
#   structure for the joint model (returned by a call to validate_assoc). 
# @param ok_assoc_interactions A character vector, specifying which association
#   structures are allowed to be used in interactions
check_order_of_assoc_interactions <- function(assoc, ok_assoc_interactions) {
  M <- ncol(assoc)
  for (i in ok_assoc_interactions) {
    for (j in ok_assoc_interactions) {
      header <- paste0(i, "_", j)
      header_reversed <- paste0(j, "_", i)
      for (m in 1:M) {
        if (assoc[header,][[m]]) {
          indices <- assoc["which_interactions",][[m]][[header]]
          sel <- which(indices < m)
          if (length(sel)) {
            # Remove indices for submodels before the current submodel m
            new_indices <- indices[-sel]
            assoc["which_interactions", ][[m]][[header]] <- new_indices
            assoc[header,][[m]] <- (length(new_indices) > 0L)
            # Replace those indices by reversing the order of association terms
            for (k in indices[sel]) {
              assoc["which_interactions",][[k]][[header_reversed]] <- 
                unique(c(assoc["which_interactions",][[k]][[header_reversed]], m))
              assoc[header_reversed,][[k]] <- 
                (length(assoc["which_interactions",][[k]][[header_reversed]]) > 0L)
            }
          }
        }
      }       
    }
  }
  assoc
}

# Return design matrices for evaluating longitudinal submodel quantities 
# at specified quadrature points/times
#
# @param data A data frame, the data for the longitudinal submodel.
# @param assoc A list with information about the association structure for 
#   the one longitudinal submodel. 
# @param y_mod A named list returned by a call to handle_y_mod (the
#   fit for a single longitudinal submodel)
# @param grp_stuff A list with information about any lower level grouping
#   factors that are clustered within patients and how to handle them in 
#   the association structure.
# @param ids,times The subject IDs and times vectors that correspond to the
#   event and quadrature times at which the design matrices will
#   need to be evaluated for the association structure.
# @param id_var The name on the ID variable.
# @param time_var The name of the time variable.
# @param epsilon The half-width of the central difference used for 
#   numerically calculating the derivative of the design matrix for slope
#   based association structures.
# @param auc_qnodes Integer specifying the number of GK quadrature nodes to
#   use in the integral/AUC based association structures.
# @return The list returned by make_assoc_parts.
handle_assocmod <- function(data, assoc, y_mod, grp_stuff, ids, times,  
                            id_var, time_var, epsilon, auc_qnodes) {
  
  if (!requireNamespace("data.table"))
    stop2("the 'data.table' package must be installed to use this function.")
  
  # Before turning data into a data.table (for a rolling merge
  # against the quadrature points) we want to make sure that the 
  # data does not include any NAs for the predictors or assoc formula variables
  tt <- y_mod$terms
  assoc_interaction_forms <- assoc[["which_formulas"]]
  extra_vars <- uapply(assoc_interaction_forms, function(i) {
    # loop over the four possible assoc interaction formulas and 
    # collect any variables used
    if (length(i)) {
      rownames(attr(terms.formula(i), "factors")) 
    } else NULL
  })
  rhs <- deparse(tt[[3L]], 500L)
  if (!is.null(extra_vars))
    rhs <- c(rhs, extra_vars)
  form_new <- reformulate(rhs, response = NULL)
  df <- get_all_vars(form_new, data)
  df <- df[complete.cases(df), , drop = FALSE]

  # Declare df as a data.table for merging with quadrature points
  dt <- prepare_data_table(df, id_var = id_var, time_var = time_var, 
                           grp_var = grp_stuff$grp_var) # NB grp_var may be NULL

  # Design matrices for calculating association structure based on 
  # (possibly lagged) eta, slope, auc and any interactions with data
  parts <- make_assoc_parts(use_function = make_assoc_parts_for_stan,
                            newdata = dt, assoc = assoc, id_var = id_var, 
                            time_var = time_var, grp_stuff = grp_stuff, 
                            ids = ids, times = times, epsilon = epsilon, 
                            auc_qnodes = auc_qnodes, y_mod = y_mod)
  
  # If association structure is based on shared random effects or shared 
  # coefficients then construct a matrix with the estimated b parameters
  # from the separate glmod (for the id_var grouping factor only). Note this
  # matrix is not passed to standata, but just used for autoscaling the 
  # priors for association parameters.
  sel_shared <- grep("^shared", rownames(assoc))
  if (any(unlist(assoc[sel_shared]))) {
    # flist for long submodel
    flist_tmp <- lme4::getME(y_mod$mod, "flist")
    # which grouping factor is id_var
    Gp_sel <- which(names(flist_tmp) == id_var) 
    # grouping factor indices
    Gp <- lme4::getME(y_mod$mod, "Gp")  
    b_beg <- Gp[[Gp_sel]] + 1
    b_end <- Gp[[Gp_sel + 1]]
    # b vector for grouping factor = id_var
    b_vec <- lme4::getME(y_mod$mod, "b")[b_beg:b_end]
    # convert to Npat * n_re matrix
    b_mat <- matrix(b_vec, nrow = length(levels(flist_tmp[[Gp_sel]])), byrow = TRUE)
  } else b_mat <- NULL
  
  parts$b_mat <- b_mat
  return(parts)
}

# Get the information need for combining the information in lower-level units
# clustered within an individual, when the patient-level is not the only 
# clustering level in the longitudinal submodel
#
# @param cnms The component names for a single longitudinal submodel
# @param flist The flist for a single longitudinal submodel
# @param id_var The name of the ID variable
# @param qnodes Integer specifying the number of qnodes being used for 
#   the GK quadrature in the stan_jm call
# @param grp_assoc Character string specifying the association structure used
#   for combining information in the lower level units clustered within an
#   individual
# @return A named list with the following elements:
#   has_grp: logical specifying whether the submodel has a grouping factor
#     that is clustered with patients.
#   grp_var: the name of any grouping factor that is clustered with patients.
#   grp_assoc: the user input to the grp_assoc argument in the stan_jm call.
#   grp_freq: a named vector with the number of lower level units clustered
#     within each individual.
#   grp_list: a named list containing the unique names for the lower level 
#     units clustered within each individual.
get_basic_grp_info <- function(cnms, flist, id_var) {
  cnms_nms <- names(cnms)
  tally <- xapply(cnms_nms, FUN = function(x) 
    # within each ID, count the number of levels for the grouping factor x
    tapply(flist[[x]], flist[[id_var]], FUN = n_distinct))
  sel <- which(sapply(tally, function(x) !all(x == 1L)) == TRUE)
  has_grp <- as.logical(length(sel))
  if (!has_grp) {
    return(nlist(has_grp))
  } else {
    if (length(sel) > 1L)
      stop("There can only be one grouping factor clustered within 'id_var'.")
    grp_var <- cnms_nms[sel] 
    return(nlist(has_grp, grp_var))
  }
}

get_extra_grp_info <- function(basic_info, flist, id_var, grp_assoc,
                               ok_grp_assocs = c("sum", "mean", "min", "max")) {
  has_grp <- basic_info$has_grp
  grp_var <- basic_info$grp_var
  if (!has_grp) { # no grouping factor clustered within patients
    return(basic_info)
  } else { # submodel has a grouping factor clustered within patients
    if (is.null(grp_var))
      stop2("Bug found: could not find 'grp_var' in basic_info.")
    if (is.null(grp_assoc))
      stop2("'grp_assoc' cannot be NULL when there is a grouping factor ",
            "clustered within patients.")       
    if (!grp_assoc %in% ok_grp_assocs)
      stop2("'grp_assoc' must be one of: ", paste(ok_grp_assocs, collapse = ", "))
    
    # cluster and patient ids for each row of the z matrix
    factor_grp <- factor(flist[[grp_var]]) 
    factor_ids <- factor(flist[[id_var]])
    
    # num clusters within each patient
    grp_freq <- tapply(factor_grp, factor_ids, FUN = n_distinct, simplify = FALSE)
    grp_freq <- unlist(grp_freq)
    
    # unique cluster ids for each patient id
    grp_list <- tapply(factor_grp, factor_ids, FUN = unique, simplify = FALSE)

    basic_info <- nlist(has_grp, grp_var)
    extra_info <- nlist(grp_assoc, grp_freq, grp_list)
    return(c(basic_info, extra_info))
  }
}

# Function to calculate the number of association parameters in the model
#
# @param assoc A list of length M with information about the association structure
#   type for each submodel, returned by an mapply call to validate_assoc
# @param a_mod_stuff A list of length M with the design matrices related to
#   the longitudinal submodels in the GK quadrature, returned by an mapply 
#   call to handle_assocmod
# @return Integer indicating the number of association parameters in the model 
get_num_assoc_pars <- function(assoc, a_mod_stuff) {
  sel1 <- c("etavalue", "etaslope", "etaauc", 
            "muvalue", "muslope", "muauc")
  sel2 <- c("which_b_zindex", "which_coef_zindex")
  sel3 <- c("which_interactions")
  K1 <- sum(as.integer(assoc[sel1,]))
  K2 <- length(unlist(assoc[sel2,]))
  K3 <- length(unlist(assoc[sel3,]))
  K4 <- sum(fetch_(a_mod_stuff, "K_data"))
  K1 + K2 + K3 + K4
}


#--------------- Functions related to generating initial values

# Create a function that can be used to generate the model-based initial values for Stan
#
# @param e_mod_stuff A list object returned by a call to the handle_coxmod function
# @param standata The data list that will be passed to Stan
generate_init_function <- function(e_mod_stuff, standata) {
  
  # Initial values for intercepts, coefficients and aux parameters
  e_beta    <- e_mod_stuff$mod$coef
  e_aux     <- if (standata$basehaz_type == 1L) runif(1, 0.5, 3) else rep(0, standata$basehaz_df)
  e_z_beta      <- standardise_coef(e_beta, standata$e_prior_mean, standata$e_prior_scale) 
  e_aux_unscaled<- standardise_coef(e_aux, standata$e_prior_mean_for_aux, standata$e_prior_scale_for_aux)

  # Function to generate model based initial values
  model_based_inits <- rm_null(list(
    e_z_beta       = array_else_double(e_z_beta),
    e_aux_unscaled = array_else_double(e_aux_unscaled),
    e_gamma  = array_else_double(rep(0, standata$e_has_intercept))))
  
  return(function() model_based_inits)
}


#--------------- Functions related to standata and sampling

# Set arguments for sampling for stan_jm
#
# Prepare a list of arguments to use with \code{rstan::sampling} via
# \code{do.call}.
#
# *Note that this differs from the set_sampling_args function in that
# it uses a different default adapt_delta and max_treedepth. Using a 
# shorter treedepth seems to stop the sampler trailing off during early 
# iterations and can drastically reduce the model estimation time, and 
# in most examples using a shorter treedepth hasn't compromised the sampler
# at later interations (ie, at later iterations the sampler doesn't
# hit the maximum treedepth). The default adapt_delta depends on the 
# largest number of group-specific parameters for any single grouping
# factor in the model.
#
# @param object The stanfit object to use for sampling.
# @param cnms The component names for the group level parameters combined
#   across all glmer submodels. This is used to determine the maximum number
#   of parameters for any one grouping factor in the model, which in turn is
#   used to determine the default adapt_delta.
# @param user_dots The contents of \code{...} from the user's call to
#   the \code{stan_jm} modeling function.
# @param user_adapt_delta The value for \code{adapt_delta} specified by the
#   user.
# @param user_max_treedepth The value for \code{max_treedepth} specified by the
#   user.
# @param ... Other arguments to \code{\link[rstan]{sampling}} not coming from
#   \code{user_dots} (e.g. \code{pars}, \code{init}, etc.)
# @return A list of arguments to use for the \code{args} argument for 
#   \code{do.call(sampling, args)}.
set_jm_sampling_args <- function(object, cnms, user_dots = list(), 
                                 user_adapt_delta = NULL, 
                                 user_max_treedepth = NULL, 
                                 ...) {
  args <- list(object = object, ...)
  unms <- names(user_dots)
  for (j in seq_along(user_dots)) {
    args[[unms[j]]] <- user_dots[[j]]
  }
  
  max_p <- max(sapply(cnms, length))
  
  default_adapt_delta <- if (max_p > 2) 0.85 else 0.80
  default_max_treedepth <- 10L
  
  if (!is.null(user_adapt_delta))
    args$control$adapt_delta <- user_adapt_delta else 
      if (is.null(args$control$adapt_delta))
        args$control$adapt_delta <- default_adapt_delta
  
  if (!is.null(user_max_treedepth))
    args$control$max_treedepth <- user_max_treedepth else
      if (is.null(args$control$max_treedepth))
        args$control$max_treedepth <- default_max_treedepth
  
  if (!"save_warmup" %in% unms) 
    args$save_warmup <- FALSE  
  
  return(args)
}  

# Return the list of pars for Stan to monitor
# 
# @param standata The list of data to pass to Stan
# @param is_jm A logical
# @return A character vector
pars_to_monitor <- function(standata, is_jm = FALSE) {
  c(if (standata$M > 0 && standata$intercept_type[1]) "yAlpha1", 
    if (standata$M > 1 && standata$intercept_type[2]) "yAlpha2", 
    if (standata$M > 2 && standata$intercept_type[3]) "yAlpha3", 
    if (standata$M > 0 && standata$yK[1]) "yBeta1",
    if (standata$M > 1 && standata$yK[2]) "yBeta2",
    if (standata$M > 2 && standata$yK[3]) "yBeta3",
    if (is_jm) "e_alpha",
    if (is_jm && standata$e_K) "e_beta",
    if (is_jm && standata$a_K) "a_beta",
    if (standata$bK1 > 0) "b1",
    if (standata$bK2 > 0) "b2",
    if (standata$M > 0 && standata$has_aux[1]) "yAux1",
    if (standata$M > 1 && standata$has_aux[2]) "yAux2",
    if (standata$M > 2 && standata$has_aux[3]) "yAux3",
    if (is_jm && length(standata$basehaz_X)) "e_aux",
    if (standata$prior_dist_for_cov == 2 && standata$bK1 > 0) "bCov1",
    if (standata$prior_dist_for_cov == 2 && standata$bK2 > 0) "bCov2",
    if (standata$prior_dist_for_cov == 1 && standata$len_theta_L) "theta_L",
    "mean_PPD")
}

# Change the MCMC samples for theta_L to Sigma
#
# @param stanfit The stanfit object from the fitted model
# @param cnms The component names for the group level terms, combined
#   across all glmer submodels
# @return A stanfit object
evaluate_Sigma <- function(stanfit, cnms) {
  nc <- sapply(cnms, FUN = length)
  nms <- names(cnms) 
  thetas <- extract(stanfit, pars = "theta_L", inc_warmup = TRUE, 
                    permuted = FALSE)
  Sigma <- apply(thetas, 1:2, FUN = function(theta) {
    Sigma <- mkVarCorr(sc = 1, cnms, nc, theta, nms)
    unlist(sapply(Sigma, simplify = FALSE, 
                  FUN = function(x) x[lower.tri(x, TRUE)]))
  })
  l <- length(dim(Sigma))
  end <- tail(dim(Sigma), 1L)
  shift <- grep("^theta_L", names(stanfit@sim$samples[[1]]))[1] - 1L
  if (l == 3) for (chain in 1:end) for (param in 1:nrow(Sigma)) {
    stanfit@sim$samples[[chain]][[shift + param]] <- Sigma[param, , chain] 
  }
  else for (chain in 1:end) {
    stanfit@sim$samples[[chain]][[shift + 1]] <- Sigma[, chain]
  }
  stanfit
}

# Get the names for the Sigma var-cov matrix
#
# @param cnms The component names for the group level terms, combined
#   across all glmer submodels
# @return A character vector
get_Sigma_nms <- function(cnms) {
  nms <- names(cnms) 
  Sigma_nms <- lapply(cnms, FUN = function(grp) {
    nm <- outer(grp, grp, FUN = paste, sep = ",")
    nm[lower.tri(nm, diag = TRUE)]
  })
  for (j in seq_along(Sigma_nms)) {
    Sigma_nms[[j]] <- paste0(nms[j], ":", Sigma_nms[[j]])
  }
  unlist(Sigma_nms)
}


#--------------- Functions related to observation weights

# Check the weights argument for stan_jm
#
# @param weights The data frame passed via the weights argument
# @param id_var The name of the ID variable
check_weights <- function(weights, id_var) {
  
  # Check weights are an appropriate data frame
  if ((!is.data.frame(weights)) || (!ncol(weights) == 2))
    stop("'weights' argument should be a data frame with two columns: the first ",
         "containing patient IDs, the second containing their corresponding ",
         "weights.", call. = FALSE)
  if (!id_var %in% colnames(weights))
    stop("The data frame supplied in the 'weights' argument should have a ",
         "column named ", id_var, call. = FALSE)
  weight_var <- setdiff(colnames(weights), id_var)
  
  # Check weights are positive and numeric
  wts <- weights[[weight_var]]
  if (!is.numeric(wts)) 
    stop("The weights supplied must be numeric.", call. = FALSE)
  if (any(wts < 0)) 
    stop("Negative weights are not allowed.", call. = FALSE)
  
  # Check only one weight per ID
  n_weights_per_id <- tapply(weights[[weight_var]], weights[[id_var]], length)
  if (!all(n_weights_per_id == 1L))
    stop("The data frame supplied in the 'weights' argument should only have ",
         "one row (ie, one weight) per patient ID.", call. = FALSE)
}

# Return the vector of prior weights for one of the submodels
#
# @param mod_stuff A named list with elements: y, flist, ord
# @param weights The data frame passed via the weights argument
# @param id_var The name of the ID variable
handle_weights <- function(mod_stuff, weights, id_var) {
  
  is_glmod <- (is.null(mod_stuff$eventtime))
  
  # No weights provided by user
  if (is.null(weights)) {
    len <- if (is_glmod) length(mod_stuff$Y$Y) else length(mod_stuff$eventtime)
    return(rep(0.0, len)) 
  }
  
  # Check for IDs with no weight supplied
  weights[[id_var]] <- factor(weights[[id_var]])
  ids <- if (is_glmod) mod_stuff$Z$group_list[[id_var]] else factor(mod_stuff$id_list)
  sel <- which(!ids %in% weights[[id_var]])
  if (length(sel)) {
    if (length(sel) > 30L) sel <- sel[1:30]
    stop(paste0("The following patient IDs are used in fitting the model, but ",
                "do not have weights supplied via the 'weights' argument: ",
                paste(ids[sel], collapse = ", ")), call. = FALSE)
  }
  
  # Obtain length and ordering of weights vector using flist
  wts_df  <- merge(data.frame(id = ids), weights, by.x = "id", by.y = id_var, sort = FALSE)
  wts_var <- setdiff(colnames(weights), id_var)
  wts     <- wts_df[[wts_var]]
  
  wts
}