File: stanreg-objects.Rd

package info (click to toggle)
r-cran-rstanarm 2.21.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,964 kB
  • sloc: cpp: 47; sh: 18; makefile: 2
file content (160 lines) | stat: -rw-r--r-- 5,857 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/stanreg-objects.R
\name{stanreg-objects}
\alias{stanreg-objects}
\title{Fitted model objects}
\description{
The \pkg{rstanarm} model-fitting functions return an object of class 
\code{'stanreg'}, which is a list containing at a minimum the components listed 
below. Each \code{stanreg} object will also have additional classes (e.g. 'aov', 
'betareg', 'glm', 'polr', etc.) and several additional components depending
on the model and estimation algorithm. \cr
\cr
Some additional details apply to models estimated using the \code{\link{stan_mvmer}}
or \code{\link{stan_jm}} modelling functions. The \code{\link{stan_mvmer}} modelling 
function returns an object of class \code{'stanmvreg'}, which inherits the 
\code{'stanreg'} class, but has a number of additional elements described in the 
subsection below. The \code{\link{stan_jm}} modelling function returns an object of class
\code{'stanjm'}, which inherits both the \code{'stanmvreg'} and \code{'stanreg'} 
classes, but has a number of additional elements described in the subsection below. 
Both the \code{'stanjm'} and \code{'stanmvreg'} classes have several of their own 
methods for situations in which the default \code{'stanreg'} methods are not 
suitable; see the \strong{See Also} section below.
}
\note{
The \code{\link{stan_biglm}} function is an exception. It returns a 
  \link[rstan:stanfit-class]{stanfit} object rather than a stanreg object.
}
\section{Elements for \code{stanreg} objects}{
   
\describe{
  \item{\code{coefficients}}{
  Point estimates, as described in \code{\link{print.stanreg}}.
  }
  \item{\code{ses}}{
  Standard errors based on \code{\link[stats]{mad}}, as described in
  \code{\link{print.stanreg}}.
  }
  \item{\code{residuals}}{
  Residuals of type \code{'response'}.
  }
  \item{\code{fitted.values}}{
  Fitted mean values. For GLMs the linear predictors are transformed by the
  inverse link function.
  }
  \item{\code{linear.predictors}}{
  Linear fit on the link scale. For linear models this is the same as
  \code{fitted.values}.
  }
  \item{\code{covmat}}{
  Variance-covariance matrix for the coefficients based on draws from the
  posterior distribution, the variational approximation, or the asymptotic 
  sampling distribution, depending on the estimation algorithm.
  }
  \item{\code{model,x,y}}{
  If requested, the the model frame, model matrix and response variable used, 
  respectively.
  }
  \item{\code{family}}{
  The \code{\link[stats]{family}} object used.
  }
  \item{\code{call}}{
  The matched call.
  }
  \item{\code{formula}}{
  The model \code{\link[stats]{formula}}.
  }
  \item{\code{data,offset,weights}}{
  The \code{data}, \code{offset}, and \code{weights} arguments.
  }
  \item{\code{algorithm}}{
  The estimation method used.
  }
  \item{\code{prior.info}}{
  A list with information about the prior distributions used.
  }
  \item{\code{stanfit,stan_summary}}{
  The object of \code{\link[rstan]{stanfit-class}} returned by RStan and a
  matrix of various summary statistics from the stanfit object.
  }
  \item{\code{rstan_version}}{
  The version of the \pkg{rstan} package that was used to fit the model.
  }
}
}

\section{Elements for \code{stanmvreg} objects}{
   
\describe{
  The \code{stanmvreg} objects contain the majority of the elements described
  above for \code{stanreg} objects, but in most cases these will be a list with each
  elements of the list correponding to one of the submodels (for example, 
  the \code{family} element of a \code{stanmvreg} object will be a list with each 
  element of the list containing the \code{\link[stats]{family}} object for one
  submodel). In addition, \code{stanmvreg} objects contain the following additional 
  elements:
  \item{\code{cnms}}{
  The names of the grouping factors and group specific parameters, collapsed 
  across the longitudinal or glmer submodels.
  }
  \item{\code{flevels}}{
  The unique factor levels for each grouping factor, collapsed across the 
  longitudinal or glmer submodels.
  } 
  \item{\code{n_markers}}{
  The number of longitudinal or glmer submodels.
  } 
  \item{\code{n_yobs}}{
  The number of observations for each longitudinal or glmer submodel.
  }
  \item{\code{n_grps}}{
  The number of levels for each grouping factor (for models estimated using 
  \code{\link{stan_jm}}, this will be equal to \code{n_subjects} if the 
  individual is the only grouping factor).
  }
  \item{\code{runtime}}{
  The time taken to fit the model (in minutes).
  }
}
}

\section{Additional elements for \code{stanjm} objects}{
   
\describe{
  The \code{stanjm} objects contain the elements described above for 
  \code{stanmvreg} objects, but also contain the following additional 
  elements:
  \item{\code{id_var,time_var}}{
  The names of the variables distinguishing between individuals, and 
  representing time in the longitudinal submodel.
  } 
  \item{\code{n_subjects}}{
  The number of individuals.
  }
  \item{\code{n_events}}{
  The number of non-censored events.
  }  
  \item{\code{eventtime,status}}{
  The event (or censoring) time and status indicator for each individual.
  }
  \item{\code{basehaz}}{
  A list containing information about the baseline hazard.
  }
  \item{\code{assoc}}{
  An array containing information about the association structure.
  }
  \item{\code{epsilon}}{
  The width of the one-sided difference used to numerically evaluate the 
  slope of the longitudinal trajectory; only relevant if a slope-based 
  association structure was specified (e.g. etaslope, muslope, etc).
  }
  \item{\code{qnodes}}{
  The number of Gauss-Kronrod quadrature nodes used to evaluate the 
  cumulative hazard in the joint likelihood function.
  }        
}
}

\seealso{
\code{\link{stanreg-methods}}, \code{\link{stanmvreg-methods}}
}