1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
---
title: "Step by step guide for creating a package that depends on RStan"
author: "Stefan Siegert, Jonah Gabry, Martin Lysy, and Ben Goodrich"
date: "`r Sys.Date()`"
output:
rmarkdown::html_vignette:
toc: true
params:
EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true")
vignette: >
%\VignetteIndexEntry{Step by step guide}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r SETTINGS-knitr, include=FALSE}
stopifnot(require(knitr))
opts_chunk$set(
comment=NA,
eval = if (isTRUE(exists("params"))) params$EVAL else FALSE
)
td <- tempdir()
PATH <- file.path(td, "rstanlm")
if(dir.exists(PATH)) {
unlink(PATH, recursive = TRUE, force = TRUE)
}
```
## Introduction
In this vignette we will walk through the steps necessary for creating an
R package that depends on Stan by creating a package with one function
that fits a simple linear regression. Before continuing, we recommend that you first read the other vignette [_Guidelines for Developers of R Packages Interfacing with Stan_](https://mc-stan.org/rstantools/articles/developer-guidelines.html).
## Creating the package skeleton
The **rstantools** package offers two methods for adding Stan functionality
to R packages:
* `rstan_create_package()`: set up a new R package with Stan programs
* `use_rstan()`: add Stan functionality to an _existing_ R package
Here we will use `rstan_create_package()` to initialize a bare-bones package
directory. The name of our demo package will be __rstanlm__; it will fit a
simple linear regression model using Stan.
```{r rstan_create_package, eval=FALSE}
library("rstantools")
rstan_create_package(path = 'rstanlm')
```
```{r rstan_create_package-eval, echo=FALSE,warning=FALSE}
library("rstantools")
rstan_create_package(path = PATH, rstudio=FALSE, open=FALSE)
```
If we had existing `.stan` files to include with the package we could use the
optional `stan_files` argument to `rstan_create_package()` to include them.
Another option, which we'll use below, is to add the Stan files once the
basic structure of the package is in place.
We can now set the new working directory to the new package directory and view
the contents. (Note: if using RStudio then by default the newly created project
for the package will be opened in a new session and you will not need the call
to `setwd()`.)
```{r, eval=FALSE}
setwd("rstanlm")
list.files(all.files = TRUE)
```
```{r, echo=FALSE}
list.files(PATH, all.files = TRUE)
```
```{r, eval=FALSE}
file.show("DESCRIPTION")
```
```{r, echo=FALSE}
DES <- readLines(file.path(PATH, "DESCRIPTION"))
cat(DES, sep = "\n")
```
Some of the sections in the `DESCRIPTION` file need to be edited by hand (e.g.,
`Title`, `Author`, `Maintainer`, and `Description`, but these also can be set
with the `fields` argument to `rstan_create_package()`). However,
`rstan_create_package()` has added the necessary packages and versions to
`Depends`, `Imports`, and `LinkingTo` to enable Stan functionality.
## Read-and-delete-me file
Before deleting the `Read-and-delete-me` file in the new package directory make
sure to read it because it contains some important instructions about
customizing your package:
```{r, eval=FALSE}
file.show("Read-and-delete-me")
```
```{r, echo=FALSE}
cat(readLines(file.path(PATH, "Read-and-delete-me")), sep = "\n")
```
You can move this file out of the directory, delete it, or list it in the
`.Rbuildignore` file if you want to keep it in the directory.
```{r, eval=FALSE}
file.remove('Read-and-delete-me')
```
```{r, echo=FALSE}
file.remove(file.path(PATH, 'Read-and-delete-me'))
```
## Stan files
Our package will call **rstan**'s `sampling()` method to use MCMC to fit a simple
linear regression model for an outcome variable `y` with a single predictor `x`.
After writing the necessary Stan program, the file should be saved with a
`.stan` extension in the `inst/stan` subdirectory. We'll save the
following program to `inst/stan/lm.stan`:
```{stan, output.var = "foo", eval = FALSE}
// Save this file as inst/stan/lm.stan
data {
int<lower=1> N;
vector[N] x;
vector[N] y;
}
parameters {
real intercept;
real beta;
real<lower=0> sigma;
}
model {
// ... priors, etc.
y ~ normal(intercept + beta * x, sigma);
}
```
```{r, include=FALSE}
stan_prog <- "
data {
int<lower=1> N;
vector[N] x;
vector[N] y;
}
parameters {
real intercept;
real beta;
real<lower=0> sigma;
}
model {
// ... priors, etc.
y ~ normal(intercept + beta * x, sigma);
}
"
writeLines(stan_prog, con = file.path(PATH, "inst", "stan", "lm.stan"))
rstan_config(PATH)
```
The `inst/stan` subdirectory can contain additional Stan programs if
required by your package. During installation, all Stan programs will be
compiled and saved in the list `stanmodels` that can then be used by R function
in the package. The rule is that the Stan program compiled from the model code
in `inst/stan/foo.stan` is stored as list element `stanmodels$foo`. Thus, the
filename of the Stan program in the `inst/stan` directory should not contain
spaces or dashes and nor should it start with a number or utilize non-ASCII
characters.
## R files
We next create the file `R/lm_stan.R` where we define the function `lm_stan()`
in which our compiled Stan model is being used. Setting the
`rstan_create_package()` argument `roxygen = TRUE` (the default value) enables
[__roxygen2__](https://CRAN.R-project.org/package=roxygen2) documentation for
the package functions. The following comment block placed in `lm_stan.R`
ensures that the function has a help file and that it is added to the package
`NAMESPACE`:
```{r}
# Save this file as `R/lm_stan.R`
#' Bayesian linear regression with Stan
#'
#' @export
#' @param x Numeric vector of input values.
#' @param y Numeric vector of output values.
#' @param ... Arguments passed to `rstan::sampling` (e.g. iter, chains).
#' @return An object of class `stanfit` returned by `rstan::sampling`
#'
lm_stan <- function(x, y, ...) {
standata <- list(x = x, y = y, N = length(y))
out <- rstan::sampling(stanmodels$lm, data = standata, ...)
return(out)
}
```
```{r, include=FALSE}
Rcode <- "
#' Bayesian linear regression with Stan
#'
#' @export
#' @param x Numeric vector of input values.
#' @param y Numeric vector of output values.
#' @param ... Arguments passed to `rstan::sampling`.
#' @return An object of class `stanfit` returned by `rstan::sampling`
lm_stan <- function(x, y, ...) {
out <- rstan::sampling(stanmodels$lm, data=list(x=x, y=y, N=length(y)), ...)
return(out)
}
"
writeLines(Rcode, con = file.path(PATH, "R", "lm_stan.R"))
```
When __roxygen2__ documentation is enabled, a top-level package file
`R/rstanlm-package.R` is created by `rstan_create_package()` to import necessary
functions for other packages and to set up the package for compiling Stan C++
code:
```{r, eval=FALSE}
file.show(file.path("R", "rstanlm-package.R"))
```
```{r, echo=FALSE}
cat(readLines(file.path(PATH, "R", "rstanlm-package.R")), sep = "\n")
```
The `#' @description` section can be manually edited to provided specific
information about the package.
## Documentation
With __roxygen__ documentation enabled, we need to generate the documentation
for `lm_stan` and update the `NAMESPACE` so the function is exported, i.e.,
available to users when the package is installed. This can be done with the
function `roxygen2::roxygenize()`, which needs to be called twice initially.
```{r, eval = FALSE}
try(roxygen2::roxygenize(load_code = rstantools_load_code), silent = TRUE)
roxygen2::roxygenize()
```
```{r, echo=FALSE, results="hide"}
try(roxygen2::roxygenize(PATH, load_code = rstantools_load_code), silent = TRUE)
roxygen2::roxygenize(PATH)
```
## Install and use
Finally, the package is ready to be installed:
```{r,eval=FALSE}
# using ../rstanlm because already inside the rstanlm directory
install.packages("../rstanlm", repos = NULL, type = "source")
```
```{r,echo=FALSE}
install.packages(PATH, repos = NULL, type = "source")
```
It is also possible to use `devtools::install(quick=FALSE)` to install the
package. The argument `quick=FALSE` is necessary if you want to recompile the
Stan models. Going forward, if you only make a change to the R code or the
documentation, you can set `quick=TRUE` to speed up the process, or use
`devtools::load_all()`.
After installation, the package can be loaded and used like any other R package:
```{r, eval=FALSE}
library("rstanlm")
```
```{r}
fit <- lm_stan(y = rnorm(10), x = rnorm(10),
# arguments passed to sampling
iter = 2000, refresh = 500)
print(fit)
```
```{r, echo=FALSE}
unlink(PATH, recursive = TRUE, force = TRUE)
```
## Advanced options
Details can be found in the documentation for `rstan_create_package()` so we
only mention some of these briefly here:
* Running `rstan_create_package()` with `auto_config = TRUE` (the default value)
automatically synchronizes the Stan C++ files with the `.stan` model files
located in `inst/stan`, although this creates a dependency of your package on
__rstantools__ itself (i.e., __rstantools__ must be installed for your package
to work). Setting `auto_config = FALSE` removes this dependency, at the cost of
having to manually synchronize Stan C++ files by running `rstan_config()` every
time a package `.stan` file is added, removed, or even just modified.
* The function `use_rstan()` can be used to add Stan functionality to an
existing package, instead of building the package from scratch.
* Note: If you are already using roxygen in your package, you'll have to use
roxygen to update your Namespace file via the `R/<package-name>-package.R` file.
Check the roxygen documentation for more details.
## Adding additional Stan models to an existing R package with Stan models
One may add additional Stan models to an existing package.
The following steps are required if one is using `devtools`:
1. Add new Stan file, e.g., `inst/stan/new.stan`
2. Run `pkgbuild::compile_dll()` to preform a fake R CMD install.
3. Run `roxygen2::roxygenize()` to update the documentation.
4. Run ` devtools::install()` to install the package locally.
## Links
* [_Guidelines for Developers of R Packages Interfacing with Stan_](https://mc-stan.org/rstantools/articles/developer-guidelines.html)
* Ask a question at the [Stan Forums](https://discourse.mc-stan.org/)
* [R packages](https://r-pkgs.org/) by Hadley Wickham and Jenny Bryan provides
a solid foundation in R package development as well as the release process.
|