1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#' Save Twitter data as a comma separated value file.
#'
#' Saves as flattened CSV file of Twitter data.
#'
#' @param x Data frame returned by an rtweet function.
#' @param file_name Desired name to save file as. If `file_name` does not
#' include the extension ".csv" it will be added automatically.
#' @param prepend_ids Logical indicating whether to prepend an "x"
#' before all Twitter IDs (for users, statuses, lists, etc.). It's
#' recommended when saving to CSV as these values otherwise get
#' treated as numeric and as a result the values are often less
#' precise due to rounding or other class-related quirks. Defaults
#' to true.
#' @param na Value to be used for missing (NA)s. Defaults to empty
#' character, "".
#' @param fileEncoding Encoding to be used when saving to
#' CSV. defaults to "UTF-8".
#' @return Saved CSV files in current working directory.
#' @family datafiles
#' @export
write_as_csv <- function(x, file_name,
prepend_ids = TRUE,
na = "",
fileEncoding = "UTF-8") {
lifecycle::deprecate_warn("1.0.0", "write_as_csv()",
details = c(i = "Only works on rtweet data before 1.0.0 version"))
## to minimize rounding
op <- options()
on.exit(options(op))
options(scipen = 14, digits = 22)
## validate inputs
stopifnot(is.data.frame(x), is.character(file_name), length(file_name) == 1L)
if (!grepl("\\.csv$", file_name)) {
file_name <- paste0(file_name, ".csv")
}
## flatten data
x <- flatten(x)
if (prepend_ids) {
x <- prepend_ids(x)
}
utils::write.csv(x, file_name, row.names = FALSE, na = na,
fileEncoding = fileEncoding)
}
#' @export
#' @rdname write_as_csv
#' @family datafiles
save_as_csv <- function(x, file_name,
prepend_ids = TRUE,
na = "",
fileEncoding = "UTF-8") {
lifecycle::deprecate_warn("1.0.0", "save_as_csv()",
details = c(i = "Only works on rtweet data before 1.0.0 version"))
write_as_csv(x, file_name, prepend_ids, na, fileEncoding)
}
#' flatten/unflatten data frame
#'
#' Converts list columns that containing all atomic elements into
#' character vectors and vice versa (for appropriate named variables
#' according to the rtweet package)
#'
#' @param x Data frame with list columns or converted-to-character (flattened)
#' columns.
#' @return If flattened, then data frame where non-recursive list
#' columns---that is, list columns that contain only atomic, or non-list,
#' elements---have been converted to character vectors. If unflattened,
#' this function splits on spaces columns originally returned as lists
#' by functions in rtweet package. See details for more information.
#'
#' @details If recursive list columns are contained within the data frame,
#' relevant columns will still be converted to atomic types but output
#' will also be accompanied with a warning message.
#'
#' `flatten` flattens list columns by pasting them into a single string for
#' each observations. For example, a tweet that mentions four other users,
#' for the mentions_user_id variable, it will include the four user IDs
#' separated by a space.
#'
#' `unflatten`` splits on spaces to convert into list columns any
#' columns with the following names: hashtags, symbols, urls_url,
#' urls_t.co, urls_expanded_url, media_url, media_t.co,
#' media_expanded_url, media_type, ext_media_url, ext_media_t.co,
#' ext_media_expanded_url, mentions_user_id, mentions_screen_name,
#' geo_coords, coords_coords, bbox_coords, mentions_screen_name
#' @export
#' @rdname flatten
#' @family datafiles
flatten <- function(x) {
lifecycle::deprecate_warn("1.0.0", "flatten()",
details = c(i = "Only works on rtweet data before 1.0.0 version"))
stopifnot(is.data.frame(x))
lst <- which(vapply(x, is.list,
FUN.VALUE = logical(1), USE.NAMES = FALSE))
atom <- which(vapply(x[lst], function(.) all(
vapply(., is.atomic, FUN.VALUE = logical(1), USE.NAMES = FALSE)
), FUN.VALUE = logical(1), USE.NAMES = FALSE))
la <- lst[atom]
x[la] <- lapply(x[la], function(a)
vapply(a, function(b)
ifelse(length(b) == 0 | (length(b) == 1 && is.na(b)), "",
paste(b, collapse = " ")),
FUN.VALUE = character(1), USE.NAMES = FALSE))
x[la] <- lapply(x[la], function(.) ifelse(. == "", NA, .))
if (any(vapply(x, is.recursive,
FUN.VALUE = logical(1), USE.NAMES = FALSE))) {
warning("data frame still contains recursive columns!")
}
x
}
#' @export
#' @rdname flatten
#' @family datafiles
unflatten <- function(x) {
lifecycle::deprecate_warn("1.0.0", "unflatten()",
details = c(i = "Only works on rtweet data before 1.0.0 version"))
yes_coords <- c("geo_coords", "coords_coords", "bbox_coords")
rec_cols <- c("hashtags", "symbols",
"urls_url", "urls_t.co", "urls_expanded_url", "media_url",
"media_t.co", "media_expanded_url", "media_type",
"ext_media_url", "ext_media_t.co", "ext_media_expanded_url",
"mentions_user_id", "mentions_screen_name", "mentions_screen_name",
yes_coords)
rc <- names(x) %in% rec_cols
lg <- vapply(x[rc], is.logical, FUN.VALUE = logical(1))
if (any(lg)) {
kp <- names(x[rc])
rc <- kp[!lg]
}
x[rc] <- lapply(x[rc], strsplit, " ")
rc <- names(x) %in% rec_cols[!rec_cols %in% yes_coords]
x[rc] <- lapply(x[rc], function(.) {
.[lengths(.) == 0] <- NA_character_
.})
rc <- names(x) %in% yes_coords
x[rc] <- lapply(x[rc], function(.) {
. <- lapply(., function(y) suppressWarnings(as.numeric(y)))
.[lengths(.) == 0] <- NA_real_
.})
x
}
prepend_ids <- function(x) {
ids <- grepl("\\_id$", names(x))
x[ids] <- lapply(x[ids], x_ids)
x
}
x_ids <- function(x) {
if (is.recursive(x)) {
x <- lapply(x, function(.)
ifelse(length(.) == 0 || (length(.) == 1 && is.na(.)),
list(NA_character_), list(paste0("x", .))))
x <- lapply(x, unlist, recursive = FALSE)
} else {
x[x == ""] <- NA_character_
x[!is.na(x)] <- paste0("x", x[!is.na(x)])
x[!is.na(x)] <- gsub(" ", " x", x[!is.na(x)])
}
x
}
unprepend_ids <- function(x) {
ids <- grepl("\\_id$", names(x))
x[ids] <- lapply(x[ids], unx_ids)
x
}
unx_ids <- function(x) {
if (is.recursive(x)) {
x <- lapply(x, function(.)
ifelse(length(.) == 0 || (length(.) == 1 && is.na(.)),
list(NA_character_), list(gsub("x", "", .))))
x <- lapply(x, unlist, recursive = FALSE)
} else {
x <- gsub("x", "", x)
}
x
}
#' Read comma separated value Twitter data.
#'
#' Reads Twitter data that was previously saved as a CSV file.
#'
#' @param file Name of CSV file.
#' @param unflatten Logical indicating whether to unflatten (separate hasthags
#' and mentions columns on space, converting characters to lists), defaults
#' to FALSE.
#' @return A tbl data frame of Twitter data
#' @examples
#'
#' \dontrun{
#'
#' ## read in data.csv
#' rt <- read_twitter_csv("data.csv")
#'
#' }
#' @family datafiles
#' @export
read_twitter_csv <- function(file, unflatten = FALSE) {
lifecycle::deprecate_warn("1.0.0", "read_twitter_csv()",
details = c(i = "Works on rtweet data saved before 1.0.0 version."))
x <- utils::read.csv(
file = file,
na.strings = "",
stringsAsFactors = FALSE,
strip.white = TRUE,
encoding = "UTF-8",
numerals = "no.loss"
)
x <- unprepend_ids(x)
if (unflatten) {
x <- unflatten(x)
}
tibble::as_tibble(x)
}
|