1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
#' Plots tweets data as a time series-like data object.
#'
#' Creates a ggplot2 plot of the frequency of tweets over a specified
#' interval of time.
#'
#' @param data Data frame or grouped data frame.
#' @param by Desired interval of time expressed as numeral plus one of
#' "secs", "mins", "hours", "days", "weeks", "months", or
#' "years". If a numeric is provided, the value is assumed to be in
#' seconds.
#' @param trim The number of observations to drop off the beginning
#' and end of the time series.
#' @param tz Time zone to be used, defaults to "UTC" (Twitter default)
#' @param ... Other arguments passed to
#' [ggplot2::geom_line()].
#' @return If
#' [ggplot2](https://cran.r-project.org/package=ggplot2) is
#' installed then a [ggplot2::ggplot()] plot object.
#' @examples
#'
#' if (auth_has_default()) {
#' ## search for tweets containing "rstats"
#' rt <- search_tweets("rstats", n = 100)
#'
#' ## plot frequency in 1 min intervals
#' ts_plot(rt, "mins")
#'
#' ## examine all Twitter activity using weekly intervals
#' ts_plot(rt, "hours")
#' }
#' @family ts_data
#' @export
ts_plot <- function(data, by = "days", trim = 0L, tz ="UTC", ...) {
do.call(ts_plot_, list(data = data, by = by, trim = trim, tz = tz, ...))
}
ts_plot_ <- function(data, by = "days", trim = 0L, tz ="UTC", ...) {
data <- ts_data(data, by, trim, tz)
check_installed("ggplot2")
if (ncol(data) == 3L) {
# retrieve group name
ggplot2::ggplot(
data, ggplot2::aes(
x = .data[["time"]], y = .data[["n"]], colour = .data[[names(data)[3]]])
) +
ggplot2::geom_line(...)
} else if (ncol(data) == 4L) {
# retrieve group names
ggplot2::ggplot(
data, ggplot2::aes(
x = .data[["time"]], y = .data[["n"]], colour = .data[[names(data)[3]]], linetype = .data[[names(data)[4]]])
) +
ggplot2::geom_line(...)
} else {
ggplot2::ggplot(
data, ggplot2::aes(x = .data[["time"]], y = .data[["n"]])) +
ggplot2::geom_line(...)
}
}
#' Converts tweets data into time series-like data object.
#'
#' Returns data containing the frequency of tweets over a specified
#' interval of time.
#'
#' @param data Data frame or grouped data frame.
#' @param by Desired interval of time expressed as numeral plus one of
#' "secs", "mins", "hours", "days", "weeks", "months", or
#' "years". If a numeric is provided, the value is assumed to be in
#' seconds.
#' @param trim Number of observations to trim off the front and end of
#' each time series
#' @param tz Time zone to be used, defaults to "UTC" (Twitter default)
#' @return Data frame with time, n, and grouping column if applicable.
#' @examples
#' if (auth_has_default()) {
#'
#' ## handles of women senators
#' orgs <- c("_R_Foundation", "ropensci")
#'
#' ## get timelines for each
#' orgs_tml <- get_timeline(orgs, n = 100)
#'
#' ## get single time series for tweets
#' ts_data(orgs_tml)
#'
#' ## using weekly intervals
#' ts_data(orgs_tml, "weeks")
#' }
#'
#' @export
ts_data <- function(data, by = "days", trim = 0L, tz ="UTC") {
args <- list(data = data, by = by, trim = trim, tz = tz)
do.call(ts_data_, args)
}
ts_data_ <- function(data, by = "days", trim = 0L, tz = "UTC") {
stopifnot(is.data.frame(data), is.atomic(by))
if (has_name_(data, "created_at")) {
dtvar <- "created_at"
} else {
dtvar <- vapply(data, inherits, "POSIXct", FUN.VALUE = logical(1))
if (sum(dtvar) == 0L) stop("no datetime (POSIXct) var found", call. = FALSE)
dtvar <- names(data)[which(dtvar)[1]]
}
## drop NAs and sort data
data <- data[!is.na(data[[dtvar]]), ]
data <- data[order(data[[dtvar]]), ]
## reformat time var
.unit <- parse_unit(by)
## adjust to desired tz
data[[dtvar]] <- convert_tz(data[[dtvar]], tz = tz)
data[[dtvar]] <- round_time(data[[dtvar]], by, tz)
## get unique values of time in series
dtm <- unique(
seq(data[[dtvar]][1], data[[dtvar]][length(data[[dtvar]])], .unit)
)
## if grouped df (up to 2 groups)
if (inherits(data, "grouped_df") &&
("groups" %in% names(attributes(data)) ||
"labels" %in% names(attributes(data)))) {
if (!"groups" %in% names(attributes(data)) &&
"labels" %in% names(attributes(data))) {
groups <- names(attr(data, "labels"))
} else {
groups <- names(attr(data, "groups"))
groups <- groups[!groups %in% ".rows"]
}
if (length(groups) > 1L) {
group2 <- groups[2]
} else {
group2 <- NULL
}
group1 <- groups[1]
lv1 <- unique(data[[group1]])
df1 <- as.POSIXct(character(), tz = tz)
df2 <- integer()
df3 <- list()
if (!is.null(group2)) {
lv2 <- unique(data[[group2]])
df4 <- list()
## count expressions for each row for output time series-like data
for (i in seq_along(dtm)) {
for (j in seq_along(lv1)) {
for (k in seq_along(lv2)) {
df1[length(df1) + 1L] <- dtm[i]
df2[length(df2) + 1L] <- sum(
data[[dtvar]] == dtm[i] &
data[[group1]] == lv1[j] &
data[[group2]] == lv2[k],
na.rm = TRUE
)
df3[[length(df3) + 1L]] <- lv1[j]
df4[[length(df4) + 1L]] <- lv2[k]
}
}
}
df <- data.frame(
time = df1,
n = df2,
g1 = unlist(df3),
g2 = unlist(df4),
stringsAsFactors = FALSE
)
names(df)[3:4] <- groups[1:2]
} else {
## count expressions for each row for output time series-like data
for (i in seq_along(dtm)) {
for (j in seq_along(lv1)) {
df1[length(df1) + 1L] <- dtm[i]
df2[length(df2) + 1L] <- sum(
data[[dtvar]] == dtm[i] &
data[[group1]] == lv1[j],
na.rm = TRUE
)
df3[[length(df3) + 1L]] <- lv1[j]
}
}
df <- data.frame(
time = df1,
n = df2,
g1 = unlist(df3),
stringsAsFactors = FALSE
)
names(df)[3] <- group1
}
} else {
df <- data.frame(
time = dtm,
n = vapply(dtm, function(x) sum(data[[dtvar]] == x), FUN.VALUE = integer(1)),
stringsAsFactors = FALSE
)
}
df <- tibble::as_tibble(df)
if (trim > 0L) {
df <- trim_ts(df, trim)
}
df
}
parse_unit <- function(by) {
stopifnot(is.atomic(by))
if (is.numeric(by)) {
return(by)
} else if (grepl("year", by)) {
n <- 60 * 60 * 24 * 365
} else if (grepl("month", by)) {
n <- 60 * 60 * 24 * 30
} else if (grepl("week", by)) {
n <- 60 * 60 * 24 * 7
} else if (grepl("day", by)) {
n <- 60 * 60 * 24
} else if (grepl("hour", by)) {
n <- 60 * 60
} else if (grepl("min", by)) {
n <- 60
} else if (grepl("sec", by)) {
n <- 1
} else {
stop("must express time interval in secs, mins, hours, days, weeks, months, or years",
call. = FALSE)
}
x <- as.double(gsub("[^[:digit:]|\\.]", "", by))
if (any(is.na(x), identical(x, ""))) {
x <- 1
}
n * x
}
#' A generic function for rounding date and time values
#'
#' @param x A vector of class POSIX or Date.
#' @param n Unit to round to. Defaults to mins. Numeric values treated
#' as seconds. Otherwise this should be one of "mins", "hours", "days",
#' "weeks", "months", "years" (plural optional).
#' @param tz Time zone to be used, defaults to "UTC" (Twitter default)
#' @return If POSIXct then POSIX. If date then Date.
#' @examples
#'
#' ## class posixct
#' round_time(Sys.time(), "12 hours")
#'
#' ## class date
#' unique(round_time(seq(Sys.Date(), Sys.Date() + 100, "1 day"), "weeks"))
#'
#' @export
round_time <- function(x, n, tz) UseMethod("round_time")
#' @export
round_time.POSIXt <- function(x, n = "mins", tz = "UTC") {
n <- parse_to_secs(n)
#as.POSIXct(hms::hms(as.numeric(x) %/% n * n), tz = tz)
hms(as.numeric(x) %/% n * n, tz = tz)
}
hms <- function(secs = NULL, tz = "UTC") {
if (is.null(secs)) {
secs <- numeric()
}
structure(secs, tzone = tz,
class = c("POSIXct", "POSIXt"))
}
#' @export
round_time.Date <- function(x, n = "months", tz = "UTC") {
x <- as.POSIXct(format(x, tz = "UTC"), tz = tz)
as.Date(round_time(x, n, tz = tz))
}
round_time2 <- function(x, interval = 60, center = TRUE, tz = "UTC") {
stopifnot(inherits(x, "POSIXct"))
## parse interval
interval <- parse_unit(interval)
## round off to lowest value
rounded <- floor(as.numeric(x) / interval) * interval
if (center) {
## center so value is interval mid-point
rounded <- rounded + round(interval * .5, 0)
}
## return to date-time
as.POSIXct(rounded, tz = tz, origin = "1970-01-01")
}
trim_ts <- function(data, trim = 1L) {
if (ncol(data) > 2L) {
g <- unique(data[[3]])
g <- lapply(g, function(x) trim_ots(data[data[[3]] == x, ], trim, trim))
g <- do.call(rbind, g)
if (ncol(data) == 4L) {
g2 <- unique(data[[4]])
g2 <- lapply(g2, function(x) trim_ots(data[data[[4]] == x, ], trim, trim))
g2 <- do.call(rbind, g2)
g <- rbind(g, g2)
}
g
} else {
trim_ots(data, trim, trim)
}
}
trim_ots <- function(x, f = 1L, l = 1L) {
x <- x[order(x[[1]]), ]
f <- seq_len(f)
l <- nrow(x) - seq_len(l) + 1L
if ((length(l) + length(f)) >= nrow(x)) {
return(x)
}
x[-c(f, l), ]
}
parse_to_secs <- function(x) {
if (is.numeric(x)) {
n <- x
} else if (grepl("year", x)) {
n <- 60 * 60 * 24 * 365
} else if (grepl("month", x)) {
n <- 60 * 60 * 24 * 30
} else if (grepl("week", x)) {
n <- 60 * 60 * 24 * 7
} else if (grepl("day", x)) {
n <- 60 * 60 * 24
} else if (grepl("hour", x)) {
n <- 60 * 60
} else if (grepl("min", x)) {
n <- 60
} else if (grepl("sec", x)) {
n <- 1
} else {
stop("must express time interval in secs, mins, hours, days, weeks, months, or years",
call. = FALSE)
}
x <- as.double(gsub("[^[:digit:]|\\.]", "", x))
if (any(is.na(x), identical(x, ""))) {
x <- 1
}
n * x
}
|