File: plot.segmented.lme.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (728 lines) | stat: -rw-r--r-- 30,378 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
plot.segmented.lme<-function(x, level=1, id = NULL, res = TRUE, pop = FALSE,
         yscale = 1, xscale = 1, n.plot, pos.leg = "topright", vline = FALSE, lines = TRUE, 
         by=NULL, add=FALSE, conf.level=0, withI=TRUE, vcov.=NULL, shade=FALSE, drop.var=NULL, text.leg=NULL, 
         id.name=TRUE, ci.psi.pop=-1, ...) {
  # plotting fitted segmented relationships for multiple subjects
  # obj: a 'segmented.lme' object 
  # id: the subject id to be plotted
  # n.plot: a vector to be passed to par(mfrow= (should be coherent with length(id)). If missing, it is computed \epending on
  # length(id). 
  # If add=TRUE, it is expected that the plotting area is already split in different plots..  
  #         if prod(n.plot)<length(id), just the *first* `prod(n.plot)' units will be drawn. 
  # pop: if TRUE the population (fixed effects only) lines are added. In this case it could be useful to set the
  # same x-range (use xlim 
  # leg: where the id should be printed. Set to NULL for no id on the plot. yscale=1 => y range for all
  # subjects xscale=1 => x range for all subjects 
  # ...: arguments to pass to plotSegLme(), especially col.l, lwd.l, lty.l for the
  #     individual lines, and col.p, lty.p, lwd.p for the population
  #     lines (provided 'pop=T').  NB 'col' refers to points (provided that 'res=TRUE')
  #     col, col.l and col.p may be *vectors* (will be recycled)
  # lines: if FALSE, points (rather than lines) are plotted (useful if the segmented profile depends on
  #     additional covariates and cannot be displayed) x11() #quartz()?
  #vline:  if TRUE, a (dashed) vertical line is drawn to emphasize the individual breakpoint.
  #========================================================================
  return.psi <- function(obj, level) {
    # restituisce predizioni dei RE cahngepoints per diversi livelli
    # di nested. NON completa
    #--------------------
    fn.re <- function(obj) {
      # restituisce un array n x n.ranef x terms n ? il n. totale
      # delle misurazioni..  n.ranef ? il n. dei random effects
      # (tipicamente ? 1, >1 con nested..)  terms ? il n. dei
      # termini coinvolti nei random effects (ad es., intercept, x
      # ..)
      ro <- ranef(obj)
      n.levels <- ncol(obj$groups)  #n. dei livelli casuali (ad es., se nested..)
      if (n.levels <= 1) {
        ro <- list(ro)
        names(ro) <- names(obj$groups)
      }
      nomi.levels <- names(obj$groups)  #nomi degli effetti casuali names(ranef(obj))
      n.terms <- sapply(ro, ncol)
      nomiTermini <- unique(as.vector(unlist(sapply(ro, colnames))))
      tutti <- array(0, c(nrow(obj$groups), ncol(obj$groups), max(n.terms)),
                     dimnames = list(NULL, names(obj$groups), nomiTermini))
      for (nome in nomiTermini) {
        for (j in nomi.levels) {
          if (nome %in% names(ro[[j]])) {
            for (i in unique(obj$groups[, j])) tutti[obj$groups[,
                                                              j] == i, j, nome] <- ro[[j]][rownames(ro[[j]]) == i,
                                                                                             nome]
          }
        }
      }
      tutti
    }
    #---------------------
    if (missing(level)) level <- ncol(obj[[2]]$groups)
    psi <- rowSums(obj$misc$matrix.psi[, 1:(level + 1), drop = FALSE])
    if (level == 0) {
      names(psi) <- NULL
    } else {
      if (level < ncol(obj[[2]]$groups))
        names(psi) <- sapply(strsplit(names(psi), "/"), function(.x) .x[max(level,
                                                                            1)])
    }
    return(psi)
    # obj<-obj[[1]] RE<-fn.re(obj) if(! 'G0' %in% dimnames(RE)[[3]])
    # stop('no 'G0' term!') n.ranef<-dim(RE)[2] psi.i<-vector('list',
    # ncol(obj$groups)) for(j in 1:n.ranef) { valori.sum<-
    # rowSums(RE[, 1:j,'G0',drop=FALSE]) valori<- tapply(valori.sum,
    # obj$groups[,j], function(x)x[1])
    # names(valori)<-names(tapply(obj$groups[,j], obj$groups[,j],
    # function(x)x[1])) psi.i[[j]]<-valori } names(psi.i) <-
    # colnames(obj$groups) attr(psi.i, 'grpNames') <-
    # attr(ranef(obj), 'grpNames') return(psi.i) kappa0i <- kappa0+ki
    # etai<-kappa0i if(id.z.psi) { kappa.old<-kappa #length=1
    # kappa<-fixed.effects(obj)[nomiG] #esclude G0..
    # etai<-etai+drop(Z.psi%*%kappa) } psi.ex<-if(psi.link=='logit')
    # inv.logit(etai,min.Z,max.Z) else etai
  }
  #========================================================================
  plotSegLme <- function(obj, id = stop("'id' should be provided"), add = FALSE, res = TRUE,
                         pop = FALSE, yscale = -1, xscale = -1, text.leg = paste("id =", id), pos.leg = NULL, vline = FALSE,
                         xLab, yLab, level, lines = TRUE, opzione = 1, ...) { #line.col=1, res.col=grey(.7),
    # Simply plots (or adds) the observed data and the segmented fitted lines for subject
    # 'id'
    #---
    # obj: an object of class 'segmented.lme' id: the subject 'id' add: if FALSE, a new
    # plot is produced with observations and fitted lines superimposed.  res: if TRUE the
    # observations (partial residuals) are added; otherwise only the fitted lines pop: if
    # TRUE the population-level estimate of the segmented relationship is added.. yscale
    # if <0, the y-scale refers to the values of 'id' only; otherwise the overall range
    # relevant to *all* subjects (useful for comparisons) main: the plot title. It can be
    # '' leg: if !NULL it can be one of 'top', 'topright',... and the id subject is put
    # on the plot. vline: if TRUE lines: if FALSE, points (rather than lines) are plotted
    # (useful if the segmented profile depends on additional covariates and cannot be
    # displayed) 
    #...: argomenti da passare al plot, compresi 'col.l' e 'lwd.l' 'lty.l'
    # che servono per le segmented lines individuali e col.p, lty.p, lwd.p che servono
    # per le linee di pop (se pop=TRUE) Problema: se ci sono nested re i levels dell
    # innermost factor vengono modificati 'lev1/lev2' (che rappresentano i nomi dei
    # coef() o ranef) dove lev1 e' il livello dell'altro fattore. Quindi o in 'id' si
    # specifica il livello costruito 'lev1/lev2' oppure i nomi dei coef() si devono
    # modificare estraendo solo il valore dopo il '\'
    rnfGrp <- obj$lme.fit.noG$groups
    if (missing(level)) level <- ncol(rnfGrp)
    # con nested funziona ma i valori dei fitted sono 'strani..', cio? dovrebbero essere
    # comunque una relazione segmented S? ? giusto solo i psi sono diversi...
    if (level != ncol(rnfGrp))
      stop("Currently only the innermost level (i.e., ", ncol(rnfGrp), ") is allowed")
    if (level > ncol(rnfGrp) || level < 0)
      stop(" 'level' should be an integer in [0, ", ncol(rnfGrp), "]")
    # rownames(coef(obj[[2]])) sono the innermost levels
    nomi <- levels(rnfGrp[, max(1, level)])  #level 0 non funziona
    if (!(id %in% nomi))
      stop("the specified 'id' is not consistent with 'level'  (should be ", nomi[1], ",",
           nomi[2], ",..,", nomi[length(nomi)], ")")
    # psi<- obj$psi.i[[paste(id)]] in realt? si possono ottenere i psi a diversi livelli
    # di nested
    psi <- if (ncol(obj$misc$matrix.psi) <= 1)
      obj$misc$matrix.psi[, 1] else rowSums(obj$misc$matrix.psi[, 1:(level + 1)])
    # se ci sono nested, i nomi di psi saranno sempre con '/' che non e' coerente se
    # level=1
    if (level < ncol(rnfGrp)) {
      if (ncol(rnfGrp) >= 2) {
        names(psi) <- sapply(strsplit(names(psi), "/"), function(.x) .x[level])
      }
    }
    psi <- psi[[paste(id)]]
    nameID <- names(rnfGrp)[level]
    y <- resid(obj$lme.fit.noG) + fitted(obj$lme.fit.noG)  #
    if (level < ncol(rnfGrp))
      names(y) <- obj$lme.fit.noG$groups[, max(level, 0)]
    range.ok <- range(y)
    XY <- cbind(obj$Z, y)
    x <- XY[names(y) == id, 1]
    y <- XY[names(y) == id, 2]
    if (yscale < 0) range.ok <- range(y)
    
    #browser()
    
    range.ok[1] <- if (sign(range.ok[1]) > 0)
      range.ok[1] * 0.98 else range.ok[1] * 1.03
    range.ok[2] <- if (sign(range.ok[2]) > 0)
      range.ok[2] * 1.03 else range.ok[2] * 0.98
    
    # x<-obj$Z
    rangeX.ok <- range(obj$Z)
    # x<-x[names(obj$Z)==id]
    if (xscale < 0) rangeX.ok <- range(x)
    
    opz <- list(...)
    
    #browser()
    
    
    opz$x <- x
    opz$y <- y
    
    #browser()
    
    if (is.null(opz$col)) opz$col <- grey(.7) 
    if (is.null(opz$cex)) opz$cex <- 1.5
    if (is.null(opz$pch)) opz$pch <- 19
    if (is.null(opz$ylim)) opz$ylim <- range.ok
    if (is.null(opz$xlim)) opz$xlim <- rangeX.ok
    if (!res) opz$type <- "n"
    
    
    if (is.null(opz$ylab)) opz$ylab<- all.vars(formula(obj[[2]]))[1]
    if (is.null(opz$xlab)) opz$xlab<- obj$namesGZ$nameZ
    
    
    
    #if (missing(yLab)) yLab <- "response"
    #if (missing(xLab)) xLab <- obj$namesGZ$nameZ
    #opz$ylab <- yLab
    #opz$xlab <- xLab
    
    
    # set col.p, lwd.p, lty.p for *population* lines (provided pop=TRUE)
    if (!is.null(opz$p.col)) {
      p.col <- opz$p.col
      opz$p.col <- NULL
    } else {
      p.col <- 1
    }
    
    if (!is.null(opz$p.lty)) {
      lty.p <- opz$p.lty
      opz$p.lty <- NULL
    } else {
      p.lty <- 2
    }
    
    if (!is.null(opz$p.lwd)) {
      p.lwd <- opz$p.lwd
      opz$p.lwd <- NULL
    } else {
      p.lwd <- 1.5
    }
    
    # set col.l, lwd.l, lty.l for *individual* lines (or points if 'lines=FALSE')
    if (!is.null(opz$l.pch)) {
      l.pch <- opz$l.pch
      opz$l.pch <- NULL
    } else {
      l.pch <- 3
    }
    
    if (!is.null(opz$l.lty)) {
      l.lty <- opz$l.lty
      opz$l.lty <- NULL
    } else {
      l.lty <- 1
    }
    
    if (!is.null(opz$l.col)) {
      l.col <- opz$l.col
      opz$l.col <- NULL
    } else {
      l.col <- 1
    }
    if (!is.null(opz$l.lwd)) {
      l.lwd <- opz$l.lwd
      opz$l.lwd <- NULL
    } else {
      l.lwd <- 2
    }
    
    if (!is.null(opz$t.col)) {
      t.col <- opz$t.col
      opz$t.col <- NULL
    } else {
      t.col <- 1
    }
    
    
    
    
    if (!add) do.call(plot, opz)
    if (!is.null(pos.leg)){ 
      legg <- if(id.name) paste(nameID, id, sep = " = ") else id
      legend(pos.leg, legend = legg, bty = "n", text.col=t.col)
    }
    
    
    ff <- fitted(obj$lme.fit.noG, level = level)
    mu <- ff[names(ff) == id]  #? fitted.segmented.lme(fit,1)
    
    m <- cbind(x, mu)
    m <- m[order(m[, 1]), ]
    
    
    #browser()
    
    
    if (!lines) {
      points(m, col = l.col, pch = l.pch, lwd = l.lwd)  #do.call(points, opz)
    } else {
      if (opzione == 1) {
        mL <- m[m[, 1] <= psi, , drop = FALSE]
        if (nrow(mL) > 1) {
          # if(length(unique(round(diff(mL[,1])/diff(mL[,2]), 6)))>1)
          # stop('Apparently non-segmented profile for unit #', id, '.. try
          # 'lines=FALSE'\n')
          fL <- splinefun(mL[, 1], mL[, 2])
          f.psi <- fL(psi)
        } else {
          mR <- m[m[, 1] >= psi, , drop = FALSE]
          # if(length(unique(round(diff(mR[,1])/diff(mR[,2]), 6)))>1)
          # stop('Apparently non-segmented profile for unit #', id,'.. try
          # 'lines=FALSE'\n')
          fR <- splinefun(mR[, 1], mR[, 2])
          f.psi <- fR(psi)
        }
        # lines(c( mL[,1], psi, mR[,1]), c( mL[,2], f.psi, mR[,2]), col=col.l,
        # lwd=lwd.l, lty=lty.l)
        
        lines(c(m[1, 1], psi, m[nrow(m), 1]), c(m[1, 2], f.psi, m[nrow(m), 2]), col = l.col,
              lwd = l.lwd, lty = l.lty)
      } else {
        nomiCoef.ok <- intersect(c("(Intercept)", obj$namesGZ$nameZ, "U"), colnames(coef(obj$lme.fit.noG)))
        nomiCoef.ok <- c(nomiCoef.ok, obj$namesGZ$nomiUx)
        coef.ok <- coef(obj$lme.fit.noG, level = level)[id, nomiCoef.ok]
        psi.ok <- return.psi(obj, level = level)[id]  #dipende da eventuali termini fissi in z.psi, e dal livello di nesting.
        # adesso devi copstruire la matrice del disegno. 
        
        
        #########################################################
        ### GUARDARE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        #########################################################
        
        #browser()
        
        xvar<-seq(min(x), max(x), l=100)
        
        coef.ok<- as.numeric(coef.ok)
        
        if(!is.null(obj$namesGZ$nomiUx)) {
          coef.ok[3] <- coef.ok[3]+ coef.ok["bUx"]* obj$lme.fit.noG$data[,obj$namesGZ$nomiUx]
        }
        
        mu.ok <- cbind(1, xvar, pmax(xvar-psi.ok,0))%*%coef.ok
        lines(xvar, mu.ok, col = l.col, lwd = l.lwd, lty = l.lty)
        
        
        # come fare se ci sono variabili U.x? coef.ok include il coef ma c'? bisogno
        # del valore corrispondente all'unita' id..
        # obj$lme.fit.noG$data[,obj$namesGZ$nomiUx] e poi selezionare per l'unita'
        # 'id' E se ci sono interazioni con intercetta e left slope???
      }
    }
    if(vline) segments(psi, par()$usr[3], psi, f.psi, lty = 3, col = l.col)
    
    #browser()
    if(attr(obj$psi.i,"is.break")[paste(id)]){
      points(psi, par()$usr[3] * 1, pch = "X", col = l.col, cex = 1.2)
      points(psi, f.psi, pch = "x", col = l.col, cex = 1, lwd=1.5)
    }
    #browser()
    
    # codici vecchi..  #left side mL<-m[m[,1]<=psi, ,drop=FALSE] fL<-splinefun(mL[,1],
    # mL[,2]) new.xL<- c(min(mL[,1]), psi) #right side mR<-m[m[,1]>=psi, ,drop=FALSE]
    # fR<-splinefun(mR[,1], mR[,2]) new.xR<- c(psi, max(mR[,1])) lines(new.xL,
    # fL(new.xL), col=1, lwd=2) lines(new.xR, fR(new.xR), col=1, lwd=2) if(vline)
    # segments(psi, par()$usr[3], psi, fR(psi), lty=3, col=1)
    if (pop) {
      #browser()
      # mu<-fitted(obj[[2]])[names(fitted(obj[[2]]))==id] #e'
      # fitted.segmented.lme(fit,1)
      # mu<-fitted(obj[[2]],0)[names(fitted(obj[[2]],0))==id] #e'
      # fitted.segmented.lme(fit,0)
      
      # mu<-fitted(obj, level=0)[names(fitted(obj, level=0))==id] #funziona solo se i
      # dati sono ordinati (osservazioni dello stesso individuo vicine..). Per cui il
      # 14/7 messo la seguente: browser() mu<-fitted(obj[[2]],
      # level=0)[names(fitted(obj[[2]], level=ncol(obj[[2]]$groups)))==id]
      mu <- fitted(obj, level = 0)
      mu <- mu[names(mu) == id]
      # mu<-mu[names(fitted(obj, level=ncol(obj[[2]]$groups)))==id]
      psi <- obj$fixed.psi[[paste(id)]]
      m <- cbind(x, mu)
      m <- m[order(m[, 1]), ]
      
      # mL<-m[m[,1]<=psi, ,drop=FALSE] if(nrow(mL)>1){ fL<-splinefun(mL[,1], mL[,2])
      # f.psi<-fL(psi) } else { mR<-m[m[,1]>=psi, ,drop=FALSE] fR<-splinefun(mR[,1],
      # mR[,2]) f.psi<-fR(psi) } lines(c( m[1,1], psi, m[nrow(m),1]), c( m[1,2], f.psi,
      # m[nrow(m),2]), col=col.l, lwd=lwd.l) left side
      m1 <- m[m[, 1] <= psi, , drop = FALSE]
      # right side
      m2 <- m[m[, 1] >= psi, , drop = FALSE]
      if (nrow(m1) > 0) {
        f1 <- splinefun(m1[, 1], m1[, 2])
        estremo <- if (nrow(m2) > 0)
          psi else min(psi, max(m1[, 1]))
        new.x1 <- c(min(m1[, 1]), estremo)
      }
      
      if (nrow(m2) > 0) {
        f2 <- splinefun(m2[, 1], m2[, 2])
        # new.x1<- seq(psi, max(m1[,1]), l=200)
        estremo <- if (nrow(m1) > 0)
          psi else max(psi, min(m2[, 1]))
        new.x2 <- c(estremo, max(m2[, 1]))
      }
      if (nrow(m1) > 0) {
        if (nrow(m1) > 1)
          lines(new.x1, f1(new.x1), col = p.col, lwd = p.lwd, lty = p.lty) else lines(new.x1, c(f1(new.x1)[1], f2(new.x2)[1]), col = p.col, lwd = p.lwd, lty = p.lty)
      }
      if (nrow(m2) > 0) {
        if (nrow(m2) > 1)
          lines(new.x2, f2(new.x2), col = p.col, lwd = p.lwd, lty = p.lty) else lines(new.x2, c(f1(new.x1)[2], f2(new.x2)[2]), col = p.col, lwd = p.lwd, lty = p.lty)
      }
      points(psi, par()$usr[3] * 1.015, pch = 4, col = p.col)
      # segments(psi, par()$usr[3], psi, f1(psi), lty=3, col=1)
    }
  }
  #========================================================================
  plotmarg<-function(obj, by=NULL, add=FALSE, conf.level=0, pos.leg=NULL, withI=TRUE, vcov.=NULL, 
                     shade=FALSE, drop.var=NULL, text.leg, ... ){
    #=========>> da provare con by con piu' termini e se leftSlope=0 
    #obj: the segmented.lme object
    #by: a named list indicating covariate names and corresponding values affecting the fitted segmented relationship.
    #    Example: by=list(group="2",z2=.2) 
    #conf.level: for pointwise CI..
    #pos.leg if different from NULL, a legend is added on the plot at "pos.leg"
    #  (which should be one a single keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center")
    #withI: if TRUE, the fitted lines are plotted with intercept (if included in the model)
    #vcov.: the fixed effect cov matrix. If NULL is computed by vcov.segmented.lme
    #shade: logical (ignored if conf.level=0)
    #drop.var: possible coefficient names to be removed before computing the segmented relationship (E.g. the group-specific intercept..)
    #...: further arguments (col, lty, lwd, xlim, ylim, xlab,..) to be passed to matplot()/matlines(). Can be vectors (e.g. lty=c(2,1,2) and lwd=c(1,2,1)
    #text.leg: if specified, it is legend to be added, provided pos.leg has been specified. 
    
    #obj[[1]] -> obj$lme.fit
    #obj[[2]] -> obj$lme.fit.noG
    #------------------
    if((conf.level<0 || conf.level>=1)) stop(" 'conf.level' is meaningless'")
    if(conf.level>0){
      V<- if(is.null(vcov.)) vcov.segmented.lme(obj) else vcov. #object$lme.fit$varFix 
    } #s
    #  if(conf.level!=0 && !is.null(by)) stop("Not yet implemented..")
    if(!is.null(by) && !is.list(by)) stop("if provided, 'by' should be a (named) list of scalars")
    opz<-list(...)
    if("pos.legend" %in% names(opz)) warning("'pos.legend' ignored.. Do you mean 'pos.leg'?", call.=FALSE)
    if(!is.null(pos.leg)) pos.leg<- match.arg(pos.leg, c("bottomright", "bottom", "bottomleft", 
                                                         "left", "topleft", "top", "topright", "right", "center"))
    Z<-obj$Z 
    nomeZ<-obj$namesGZ$nameZ
    beta.noG<- fixef(obj$lme.fit.noG) 
    beta.all<-fixef(obj$lme.fit)
    beta.G<-beta.all[setdiff(names(fixef(obj$lme.fit)), names(beta.noG))]
    nomiCoef<-names(beta.noG)
    
    if(!is.null(by)) {
      a<-by
      #isZero<-sapply(a, function(x) x==0)
      if(!all(sapply(a, length)==1)) stop("vectors in 'by' are not allowed")
      nomiOK<-const<-idList<-vector("list", length(a))
      values<-vector(,length(a))
      
      for(i in 1:length(a)) {
        nomiOK[i]<-nomeOK <- if(is.character(a[[i]])) paste(names(a[i]),a[[i]], sep="") else names(a[i])
        
        #replace 0
        if(a[[i]]==0) a[[i]]<- 1e-16
        
        #per l'intercetta
        bInterc<- beta.noG[nomeOK]
        if(!is.character(a[[i]])) bInterc<-bInterc*a[[i]] 
        
        #per la left slope
        bLeftSlope<-c(beta.noG[paste(obj$namesGZ$nameZ,":",nomeOK, sep="")],
                      beta.noG[paste(nomeOK, ":", obj$namesGZ$nameZ, sep="")])
        bLeftSlope<-bLeftSlope[!is.na(bLeftSlope)]
        if(!is.character(a[[i]])) bLeftSlope<-bLeftSlope*a[[i]]
        if(length(bLeftSlope)<=0) bLeftSlope<-NA 
        
        #per la slope-diff
        bU<-beta.noG[paste("U", nomeOK, sep=".")]
        if(!is.character(a[[i]])) bU <-bU*a[[i]]
        
        #per il changepoint
        bG<-beta.G[paste("G", nomeOK, sep=".")]
        if(!is.character(a[[i]])) bG <-bG*a[[i]]
        
        const[[i]]<-c(bInterc, bLeftSlope, bU, bG)
        const[[i]]<- ifelse(is.na(const[[i]]),0,const[[i]])
        
        idList[[i]]<-names(c(bInterc, bLeftSlope, bU, bG))
        values[i]<-ifelse(is.character(a[[i]]),1,a[[i]])
      }
      #browser()          
      const<-matrix(unlist(const),4, byrow=FALSE)
      colnames(const)<-names(by)
      nomiNOdiff <- names(which(colSums(const)==0))
      if(length(nomiNOdiff)>0) warning("The", paste(" '", nomiNOdiff,"' ",sep=""), "value supplied in 'by' does not modify the baseline line", call. = FALSE)
      
      nomiCoef<- c("(Intercept)", nomeZ, "U", "G0", unlist(idList))
      ##########################################    
    } else { #se 'by' e' NULL
      const<-matrix(0,4,1) 
      nomiCoef<- c("(Intercept)", nomeZ, "U", "G0")
      values<-rep(1,4)
    }  
    ##########################################    
    #browser()  
    #prepara la matrice del disegno..
    est.psi.fixed <-fixef(obj$lme.fit)["G0"]+ sum(const[4,])
    if(obj$call$psi.link=="logit") est.psi.fixed <- plogis(est.psi.fixed)
    Z.new<-as.numeric(sort(c(seq(min(Z),max(Z),l=100), est.psi.fixed)))
    U<-pmax(Z.new-est.psi.fixed,0)
    X<-cbind(1,Z.new,U) #colnames(X)<-c("(Intercept)",nomeZ,"U")
    
    Ident<-diag(ncol(X))
    M<-vector("list", length=ncol(const))
    for(j in 1:ncol(const)) M[[j]]<-values[j]*Ident[, which(const[-4,j]!=0), drop=FALSE]
    
    M<-cbind(Ident, do.call("cbind", M))
    
    if(!withI) {
      M<-M[,-1] 
      nomiCoef <-setdiff(nomiCoef, "(Intercept)")
    }
    
    final.names<-setdiff(nomiCoef, c("G0",obj$namesGZ$nomiG,""))
    final.names<-final.names[!is.na(final.names)]
    
      #browser()
    
    if(!is.null(drop.var)){
      colnames(M)<-final.names
      final.names <-setdiff(final.names, drop.var)
      M<-M[, final.names]
    }
    
    XX<- X%*%M
    r<-fit<- XX %*% beta.noG[final.names]
    
    if (conf.level > 0) {
      zalpha<- -qnorm((1-conf.level)/2)
      V<-V[final.names,final.names]
      SE.fit<-sqrt(rowSums((XX %*% V) * XX)) #sqrt(diag(X%*%Var%*%t(X)))
      r<-cbind(fit-zalpha*SE.fit, fit, fit+zalpha*SE.fit)
      opz$lty<-c(2,1,2)
    }
    
    #  b<-beta.noG[c("(Intercept)",nomeZ,"U")]
    #  b<-b+ rowSums(const[1:3,,drop=FALSE])
    #  b<-b[!is.na(b)]
    #  r<-fit<- drop(X  %*% b)
    if(is.null(opz$col))  opz$col<-"1"
    if(is.null(opz$type)) opz$type<-"l"
    if(is.null(opz$lty))  opz$lty<-1
    if(is.null(opz$lwd))  opz$lwd<-1.8
    if(is.null(opz$xlab)) opz$xlab<-obj$namesGZ$nameZ
    if(is.null(opz$ylab)) opz$ylab<-all.vars(formula(obj[[1]]))[1]
    if(!is.null(opz$alpha.f)) {alpha.f<-opz$alpha.f;opz$alpha.f<-NULL} else {alpha.f<-.15}  
    opz$x<-Z.new
    opz$y<-r
    if(add) do.call(matlines, opz)  else do.call(matplot, opz)
    
    if (shade && conf.level>0) polygon(c(Z.new, rev(Z.new)), c(r[, 1], rev(r[, 3])), 
                                       col = adjustcolor(opz$col, alpha.f), border = NA)
    
    #browser()  
    if(!is.null(pos.leg)) {
      if(!is.null(by)){
        id<-apply(const,2,function(.x) any(.x!=0)) #funziona sempre?
        #se sono tutti 0, significa che stai disegnando la segmented baseline.. 
        #Ma perche' questo dovrebbe influenzare la scelta di mettere la legenda? proviamo a metterlo sempre TRUE
        #id<-TRUE
        leg<-paste(names(by)[id],unlist(by)[id],sep="=",collapse="  ")
      } else {
        leg<-NULL
      }
      if(!is.null(text.leg)) leg <- text.leg
      try(legend(pos.leg, leg, bty="n", col=min(opz$col), lty=min(opz$lty), lwd=max(opz$lwd)), silent=TRUE)
    }
  }
  
  #========================================================================
  #inizio funzione
  if(level==0){
    plotmarg(x, by=by, add=add, conf.level=conf.level, pos.leg = pos.leg, withI=withI, vcov.=vcov., 
             shade=shade, drop.var=drop.var, text.leg=text.leg, ...)
  } else {
    obj <- x
    rnfGrp <- obj$lme.fit.noG$groups
    if (missing(level))
      level <- ncol(rnfGrp)
    if (level != ncol(rnfGrp))
      stop("Currently only the innermost level (i.e., ", ncol(rnfGrp), ") is allowed")
    opz <- list(...)
    Ylab <- if (is.null(opz$ylab))
      all.vars(formula(obj[[1]]))[1] else opz$ylab
    Xlab <- if (is.null(opz$xlab))
      obj$namesGZ$nameZ else opz$xlab
    opz$xlab <- opz$ylab <- NULL
    opz$pop <- pop
    opz$res <- res
    opz$xLab <- ""
    opz$yLab <- ""
    opz$main <- ""
    opz$xaxt <- "n"
    opz$yaxt <- "n"
    opz$pos.leg <- pos.leg
    opz$yscale <- yscale
    opz$xscale <- xscale
    opz$vline <- vline
    opz$level <- level
    opz$lines <- lines
    opz$obj <- quote(obj)
    if (is.null(id))
      id <- names(obj$psi.i)  #levels(rnfGrp[,ncol(rnfGrp)])  
    if (missing(n.plot))
      n.plot <- if (length(id) <= 1)
        c(1, 1) else c(3, ceiling(length(id)/3))
    
    if(prod(n.plot)!=1) id <- id[1:min(prod(n.plot), length(id))]
    
    # color of individual lines
    l.col <- if (!is.null(opz$l.col)) opz$l.col else 1
    l.col <- rep(l.col, length(id))
    
    l.lwd <- if (!is.null(opz$l.lwd)) opz$l.lwd else 1
    l.lwd <- rep(l.lwd, length(id))

    l.lty <- if (!is.null(opz$l.lty)) opz$l.lty else 1
    l.lty <- rep(l.lty, length(id))
    
    col <- if (!is.null(opz$col)) opz$col else grey(.7) #for residuals..
    col <- rep(col, length(id))
    
    p.col <- if (!is.null(opz$p.col)) opz$p.col else 1
    p.lty <- if (!is.null(opz$p.lty)) opz$p.lty else 3
    p.lwd <- if (!is.null(opz$p.lwd)) opz$p.lwd else 1
    #p.col <- rep(p.col, length(id))
    
    t.col <- if (!is.null(opz$t.col)) opz$t.col else 1 #for legend text..
    t.col <- rep(t.col, length(id))
    
     #browser()   
    
    # if(dev.cur()==1) { #se non e' aperto alcun device..
    #unico grafico con tutti i profili individuali.. 
    #======================================================
    xlim<- if(!is.null(opz$xlim)) opz$xlim else range(x$Z)
    ylim<- if(!is.null(opz$ylim)) opz$ylim else NULL
    k<-1
    if(prod(n.plot)==1 && length(id)>1){
      plotSegLme(obj=x, id=id[k], add=FALSE, pop=FALSE, res=FALSE, xLab='', yLab='', 
                 l.col=l.col[k], l.lwd=l.lwd[k], l.lty=l.lty[k], xlim=xlim, ylim=ylim)
      for (i in id[-1]) {
        k<-k+1
        plotSegLme(obj=x, id=i, add=TRUE, pop=FALSE, res=FALSE, xLab='', yLab='', 
                   l.col=l.col[k], l.lwd=l.lwd[k], l.lty=l.lty[k])
        # main='', xaxt='n', yaxt='n', leg=leg, yscale=yscale,
        # vline=vline, xscale=xscale, level=level, ...)
        #opz$id <- i
        #if (col.l.id) opz$col.l <- col.l[k]
        #if (col.p.id) opz$col.p <- col.p[k]
        #if (col.id) opz$col <- col[k]
        
        #guarda bene il discorso della stima sella relazione only-fixed-effects..
        #opz$pop<-FALSE
        #do.call(plotSegLme, opz)
      }
      box()
      if(pop) plotmarg(obj, add=TRUE, col=p.col, lwd=p.lwd, lty=p.lty)
      if(ci.psi.pop>=0){
        y <- par()$usr[3]+abs(par()$usr[3])/10 
        points(fixef(obj)["G0"],y,type="p", col=p.col, pch=19, cex=.8)
        if(ci.psi.pop>0){
          ci.psi<-confint.segmented.lme(obj, level=ci.psi.pop)[,"G0"]
          arrows(min(ci.psi), y, max(ci.psi), y, code=3, angle=90, length=.05, col=p.col)
        }
      }
      return(invisible(NULL))
    }
    
    old.mar<- par()$mar
    old.oma<- par()$oma
    old.mfrow<- par()$mfrow
    
    #======================================================
    if(length(id)>1){
        par(mfrow = n.plot)
        id.sx <- 1 + n.plot[2] * (0:(n.plot[1] - 1))  #i grafici di sx
        id.bot <- (prod(n.plot):1)[1:n.plot[2]]  #i grafici di sotto
        if(yscale>=0) {
          if(xscale>=0) {
            par(mar = rep(0, 4)) 
            } else {
              opz$xaxt<-"n"
              par(mar = c(0,0,2.2,0))
              }
        } else {
          #opz$yaxt<-NULL
          if(xscale>=0) {
            par(mar = c(0,0,0,2.5)) 
            } else {
              opz$xaxt<-"n"
              par(mar = c(0,0,2,2.5))
            }
        }
        par(oma = c(5, 5, 1, 1))
        out <- TRUE
      } else {
        id.sx <- 1:length(id)
        id.bot <- 1:length(id)
        out <- FALSE
      }
    k <- 0
    opz$add<- add
    #col.l lo prende anche sui punti????
    for (i in id) {
      #browser()
      k <- k + 1
      # plotSegLme(obj, id=i, pop=pop, res=res, xLab='', yLab='',
      # main='', xaxt='n', yaxt='n', leg=leg, yscale=yscale,
      # vline=vline, xscale=xscale, level=level, ...)
      opz$id <- i
      opz$l.col <- l.col[k]
      opz$p.col <- p.col[k]
      opz$col <- col[k]
      
      #guarda bene il discorso della stima sella relazione only-fixed-effects..
      opz$pop<-FALSE
      do.call(plotSegLme, opz)
      if(pop) plotmarg(obj, add=TRUE, lty=2)
      #browser()
      
      if(ci.psi.pop>=0){
        y <- par()$usr[3]+abs(par()$usr[3])/10 
        points(fixef(obj)["G0"], y, type="p", col=p.col, pch=19, cex=.8)
        if(ci.psi.pop>0){
          ci.psi<-confint.segmented.lme(obj, level=ci.psi.pop)[,"G0"]
          arrows(min(ci.psi), y, max(ci.psi), y, code=3, angle=90, length=.05, col=p.col)
        }
      }
      
      #browser()
      
      # tt<-axTicks(1) las=2
      #if((xscale>=0)&&(k %in% id.bot)) axis(1, cex.axis = 0.7, at = NULL) else axis(1, labels = FALSE)
      #if((yscale>=0)&&(k%in%id.sx)) axis(2, labels = TRUE, cex.axis = 0.7) else axis(2, labels = FALSE)
      #if((k %in% id.bot)) axis(1, cex.axis = 0.7, at = NULL) else axis(1, labels = FALSE)
      #
      #if(xscale>=0) {
       # if((k %in% id.bot)) axis(1, cex.axis = 0.7, at = NULL)
      #  axis(1, labels = FALSE)
      #}
      #browser()
      if((xscale<0)|| ((xscale>=0)&&(k%in%id.bot))) axis(1, labels = TRUE, cex.axis = 0.7) else axis(1, labels = FALSE)
      #if(((xscale>=0)&&(k%in%id.bot))) axis(1, labels = TRUE, cex.axis = 0.7) else axis(1, labels = FALSE)
      
      if((yscale<0)|| ((yscale>=0)&&(k%in%id.sx))) axis(2, labels = TRUE, cex.axis = 0.7) else axis(2, labels = FALSE)
      
    }
    if(length(id)>1) {
      mtext(Xlab, 1, line = 3, outer = out)
      mtext(Ylab, 2, line = 3, outer = out)
      par(mar=old.mar, oma=old.oma, mfrow=old.mfrow)
    }
  }
}