1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
plot.segmented<-function (x, term, add = FALSE, res = FALSE, conf.level = 0,
interc=TRUE, link = TRUE, res.col = grey(.15, alpha = .4), rev.sgn = FALSE, const = NULL,
shade=FALSE, rug=!add, dens.rug=FALSE, dens.col = grey(0.8),
transf=I, isV=FALSE, is=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, .coef=NULL, prev.trend=FALSE,
smoos=NULL, hide.zeros=FALSE, leg="topleft", psi.lines=FALSE, ...){
#put leg=NA if you do not want the legend..
#funzione plot.segmented che consente di disegnare anche i pointwise CI
f.U<-function(nomiU, term=NULL){
#trasforma i nomi dei coeff U (o V) nei nomi delle variabili corrispondenti
#and if 'term' is provided (i.e. it differs from NULL) the index of nomiU matching term are returned
k<-length(nomiU)
nomiUsenzaU<-strsplit(nomiU, "\\.")
nomiU.ok<-vector(length=k)
for(i in 1:k){
nomi.i<-nomiUsenzaU[[i]][-1]
if(length(nomi.i)>1) nomi.i<-paste(nomi.i,collapse=".")
nomiU.ok[i]<-nomi.i
}
if(!is.null(term)) nomiU.ok<-(1:k)[nomiU.ok%in%term]
return(nomiU.ok)
}
#--------------
enl.range<-function(..., enlarge=TRUE){
#modifica il min dei valori in ...
r<-range(...)
if(enlarge) r[1]<-if(sign(r[1])>0) r[1]*.9 else r[1]*1.1
r
}
#--------------
#se l'oggetto e' segmented.Arima il nome dell'eventuale interc va sostituito..
#if((all(class(x)==c("segmented", "Arima")))) names(x$coef)<-gsub("intercept", "(Intercept)", names(coef(x)))
if(all(c("segmented", "Arima") %in% class(x))) names(x$coef)<-gsub("intercept", "(Intercept)", names(x$coef))
covv <- if(is.null(.vcov)) vcov(x, is=is, var.diff=var.diff) else .vcov
if(!is.null(.coef)) {
estcoef<- .coef
} else {
estcoef <- coef(x)
if(is.null(estcoef)) estcoef <- x$coef
if(is.null(estcoef)) stop("No coeffs in the fit? Please use '.coef'")
}
if(length(estcoef)==0) stop("No coefficient in the object fit?")
#browser()
if(!all(dim(covv)==c(length(estcoef), length(estcoef)))) stop("dimension of cov matrix and estimated coeffs do not match", call. = FALSE)
#--------------
linkinv <- !link
if (inherits(x, what = "glm", which = FALSE) && linkinv && !is.null(x$offset) && res) stop("residuals with offset on the response scale?")
if(conf.level< 0 || conf.level>.9999) stop("meaningless 'conf.level'")
if ((inherits(x, what = "glm", which = FALSE) && linkinv) || res) {
if(!(identical(transf, I) || identical(transf, "I"))) {transf<-I; warning("'transf' set to I with 'res=TRUE' and/or 'link=FALSE'.")}
}
if(missing(term)) {
if (length(x$nameUV$Z) > 1) {
stop("please, specify `term'")
} else {
term <- x$nameUV$Z
}
} else {
#browser()
if(is.numeric(term)) term <- x$nameUV$Z[term]
#if(!is.character(term)) stop("please specify correctly 'term' ")
#term<- deparse(substitute(term))
#if(dterm %in% x$nameUV$Z) term<-dterm
if (!isTRUE(all(term %in% x$nameUV$Z))) stop(paste("Unknown term. It should be numeric or one of: ", paste(" '", x$nameUV$Z, "' ", sep="", collapse="")))
}
if(length(term)>1){
opz<-list(...)
cols<- if(!is.null(opz$col)) opz$col else 1:length(term)+1
cols <- rep(cols, l=length(term))
res.cols<- rep(res.col, l=length(term))
lwds<- if("lwd"%in% names(opz)) opz$lwd else 2
lwds<- rep(lwds, l=length(term))
ltys<- if("lty"%in% names(opz)) opz$lty else 1
ltys<- rep(ltys, l=length(term))
cexs<- if("cex"%in% names(opz)) opz$cex else .75
cexs<- rep(cexs, l=length(term))
pchs<- if("pch"%in% names(opz)) opz$pch else 19
pchs<- rep(pchs, l=length(term))
if(!is.null(opz$ylim)) {
Ylim <- opz$ylim
} else {
if(inherits(x, "glm")){
if(link){
Ylim <- if(!res) range(x$linear.predictors) else range(x$linear.predictors+x$residuals)
} else {
Ylim <- if(!res) range(x$fitted.values) else range(x$fitted.values+ residuals(x, "response"))
}
} else {
Ylim <- if(!res) range(x$fitted.values) else range(x$fitted.values+x$residuals)
}
}
Ylab <- if(!is.null(opz$ylab)) opz$ylab else paste(formula(x))[2]
idTerm <- if(is.numeric(term)) term else match(term, x$nameUV$Z)
nomeX <- intersect(strsplit(x$nameUV$Z,":")[[idTerm[1]]], unlist(strsplit(x$nameUV$Z,":")[idTerm[-1]]))
Xlab <- if(!is.null(opz$xlab)) opz$xlab else nomeX
Xlim<- if(!is.null(opz$xlim)) opz$xlim else range(x$model[,nomeX])
int.all<-rep(NA, length(term))
plot.segmented(x, term[1], add = add, res = res, conf.level = conf.level,
interc=interc, link = link, res.col = res.cols[1], rev.sgn = rev.sgn, const = const,
shade=shade, rug=FALSE, dens.rug=FALSE, dens.col = grey(0.8),
transf=I, isV=FALSE, is=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, .coef=NULL, prev.trend=FALSE,
smoos=NULL, hide.zeros=TRUE, col=cols[1], ylim=Ylim, xlim=Xlim, ylab=Ylab,xlab=Xlab,
lty=ltys[1],pch=pchs[1],lwd=lwds[1],cex=cexs[1])
Term<- if(is.numeric(term[1])) x$nameUV$Z[term[1]] else term[1]
int.all[1]<-interc.gr<- strsplit(Term, ":")[[1]][2]
points.segmented(x, term[1], col=cols[1], const=estcoef[interc.gr], v=psi.lines, pch=20, link=link)
for(j in 2:length(term)){
plot.segmented(x, term[j], add = TRUE, res = res, conf.level = conf.level,
interc=interc, link = link, res.col = res.cols[j], rev.sgn = rev.sgn, const = const,
shade=shade, rug=FALSE, dens.rug=FALSE, dens.col = grey(0.8),
transf=I, isV=FALSE, is=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, .coef=NULL, prev.trend=FALSE,
smoos=NULL, hide.zeros=TRUE,col=cols[j],
lty=ltys[j],pch=pchs[j],lwd=lwds[j],cex=cexs[j])
Term<- if(is.numeric(term[j])) x$nameUV$Z[term[j]] else term[j]
int.all[j]<-interc.gr<- strsplit(Term, ":")[[1]][2]
points.segmented(x, term[j], col=cols[j], const = estcoef[interc.gr], v=psi.lines, pch=20, link=link)
}
if(!is.na(leg)) {
legend(leg, int.all, col=cols, lty=1, lwd=1.5, bty="n")
}
} else {
if(is.null(const)){
interc.gr<- strsplit(term, ":")[[1]][2]
const<- estcoef[interc.gr]
if(is.na(const)) const<-0
}
if(!is.numeric(const)) stop(" 'const' should be NULL (default) or numeric")
opz <- list(...)
col.shade<-if(!is.null(opz$col.shade)) adjustcolor(opz$col.shade, .15) else adjustcolor("grey", .4)
cols<- if("col"%in% names(opz)) opz$col else 2
lwds<- if("lwd"%in% names(opz)) opz$lwd else 2
ltys<- if("lty"%in% names(opz)) opz$lty else 1
cexs<- if("cex"%in% names(opz)) opz$cex else .75
pchs<- if("pch"%in% names(opz)) opz$pch else 19
ylabs<- if("ylab"%in% names(opz)) opz$ylab else paste("Effect of ", term, sep = " ")
xlabs<- if("xlab"%in% names(opz)) opz$xlab else term
a <- intercept(x, term, digits=20, .vcov=covv, .coef=estcoef)[[1]][, "Est."]
#Poiche' intercept() restituisce quantita' che includono sempre l'intercetta del modello, questa va eliminata se interc=FALSE
idInterc<-grep("ntercept",names(estcoef))
if(!interc && length(idInterc)==1) a<- a-estcoef[idInterc]
b <- slope(x, term, digits=20, .coef=estcoef, .vcov=covv)[[1]][, "Est."]
#browser()
id <- f.U(rownames(x$psi), term)
est.psi <- x$indexU[[term]]
val <- sort(c(est.psi, x$rangeZ[, term]))
#vettorializza i cols, lwds, ltys
cols<-rep(cols, l=length(est.psi)+1)
lwds<-rep(lwds, l=length(est.psi)+1)
ltys<-rep(ltys, l=length(est.psi)+1)
#---------aggiunta per gli IC
rangeCI<-NULL
vall<-sort(c(seq(min(val), max(val), l=100), est.psi, est.psi+1e-5))
#ciValues<-predict.segmented(x, newdata=vall, se.fit=TRUE, type=tipo, level=conf.level)
vall.list<-list(vall)
names(vall.list)<-term
if(conf.level>0) {
k.alpha<- if(all(c("segmented","lm") %in% class(x))) abs(qt((1-conf.level)/2, x$df.residual)) else abs(qnorm((1-conf.level)/2))
ciValues<-broken.line(x, vall.list, link=link, interc=interc, se.fit=TRUE, isV=isV, is=is, var.diff=var.diff,
p.df=p.df, .vcov=covv, .coef=estcoef) #se gli passi covv, gli argomenti is e var.diff NON servono perche li ignora..
ciValues<-cbind(ciValues$fit, ciValues$fit- k.alpha*ciValues$se.fit, ciValues$fit + k.alpha*ciValues$se.fit) + const
#---> transf...
ciValues<-apply(ciValues, 2, transf)
rangeCI<-range(ciValues)
#ciValues e' una matrice di length(val)x3. Le 3 colonne: stime, inf, sup
#polygon(c(vall, rev(vall)), c(ciValues[,2],rev(ciValues[,3])), col = "gray", border=NA)
}
#---------
a.ok <- c(a[1], a)
b.ok <- c(b[1], b)
y.val <- a.ok + b.ok * val + const
a.ok1 <- c(a, a[length(a)])
b.ok1 <- c(b, b[length(b)])
y.val <- y.val1 <- a.ok1 + b.ok1 * val + const
s <- 1:(length(val) - 1)
if(rev.sgn) val <- -val
m <- cbind(val[s], y.val1[s], val[s + 1], y.val[s + 1])
#xvalues <- if(all(c("segmented", "Arima") %in% class(x))) x$Z[,1] else model.matrix(x)[,term] #x$model[, term]
#browser()
if(res || dens.rug || rug){
if(inherits(x,"Arima")){
xvalues <-x$Z[,1]
} else {
M <- model.matrix.segmented(x)
#il 18/4/24 mi sono accorto che con ogg ottenuti da segmented.* con leftmost pendenza nulla non funzionava
#perche' model.matrix.segmented non restituiva la variabile (non inserita nel modello (g)lm di partenza..)
if(!term %in% colnames(M) && term%in%names(x$model)) M<-cbind(M, x$model[,term,drop=FALSE] )
if(term %in% colnames(M)) {
xvalues <- M[,term]
} else {
id.segTerm<-which(sapply(names(x$nameUV$formulaSeg), function(.x) startsWith(term,.x)))
xvalues <- model.matrix(x$nameUV$formulaSeg[[id.segTerm]], data=x$model)[,term]
}
}
if(rev.sgn) xvalues <- -xvalues
}
#browser()
if(res){
new.d<-data.frame(ifelse(rep(rev.sgn, length(xvalues)),-xvalues, xvalues))
names(new.d)<-term
fit0 <- broken.line(x, new.d, link = link, interc=interc, se.fit=FALSE, .vcov=covv, .coef=estcoef)$fit
}
#-------------------------------------------------------------------------------
if (inherits(x, what = "glm", which = FALSE) && linkinv) { #se GLM con link=FALSE (ovvero linkinv=TRUE)
fit <- if (res)
#predict.segmented(x, ifelse(rep(rev.sgn, length(xvalues)),-xvalues,xvalues), type=tipo) + resid(x, "response") + const
#broken.line(x, term, gap = show.gap, link = link) + resid(x, "response") + const
fit0 + resid(x, "response") + const
else x$family$linkinv(c(y.val, y.val1))
xout <- sort(c(seq(val[1], val[length(val)], l = 50), val[-c(1, length(val))],
pmax(val[-c(1, length(val))]*1.0001, val[-c(1, length(val))]*.9999)))
l <- suppressWarnings(approx(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), xout = xout))
val[length(val)]<- if(rev.sgn) min(l$x) else max(l$x) #aggiunto 11/09/17.. if else il 9/3/21
id.group <- cut(l$x, val, labels=FALSE, include.lowest =TRUE, right=TRUE)
#xout <- sort(c(seq(val[1], val[length(val)], l = 150), val[-c(1, length(val))],val[-c(1, length(val))]*1.0001))
#l <- suppressWarnings(approx(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), xout = xout))
#val[length(val)]<-max(l$x) #aggiunto 11/09/17
#id.group <- cut(l$x, val, FALSE, TRUE)
yhat <- l$y
xhat <- l$x
m[, c(2, 4)] <- x$family$linkinv(m[, c(2, 4)])
if (!add) {
plot(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]),
type = "n", xlab = xlabs, ylab = ylabs,
main = opz$main, sub = opz$sub,
cex.axis = opz$cex.axis,
cex.lab = opz$cex.lab,
xlim = opz$xlim,
ylim = if(is.null(opz$ylim)) enl.range(fit, rangeCI, enlarge=dens.rug) else opz$ylim
)
if(dens.rug){
density <- density(xvalues)
# the height of the densityity curve
max.density <- max(density$y)
# Get the boundaries of the plot to
# put the density polygon at the x-line
plot_coordinates <- par("usr")
# get the "length" and range of the y-axis
y.scale <- plot_coordinates[4] - plot_coordinates[3]
# transform the y-coordinates of the density
# to the lower 10% of the plotting panel
density$y <- (0.1 * y.scale / max.density) * density$y + plot_coordinates[3]
## plot the polygon
polygon( density$x , density$y , border = FALSE , col = dens.col)
box()
}
if(rug) {
#usare rug()?
segments(xvalues, rep(par()$usr[3],length(xvalues)), xvalues,
rep(par()$usr[3],length(xvalues))+ abs(diff(par()$usr[3:4]))/80)
}
}
if (res) {
if(hide.zeros) {
fit <- fit[abs(xvalues)>1e-8]
xvalues <- xvalues[abs(xvalues)>1e-8]
}
if(is.null(smoos)) { smoos <- if(length(xvalues)>10000) TRUE else FALSE }
if(smoos){
smoothScatter(xvalues, fit, add=TRUE, nrpoints = 0, colramp= colorRampPalette(c("white", res.col)))
} else {
points(xvalues, fit, cex = cexs, pch = pchs, col = res.col)
}
}
if(conf.level>0){
if(rev.sgn) vall<- -vall
if(shade) {
polygon(c(vall, rev(vall)), c(ciValues[,2],rev(ciValues[,3])),
col = col.shade, border=NA)
} else {
#browser()
id.group1 <- cut(vall, val, labels=FALSE, include.lowest =TRUE, right=TRUE) #serve per gli IC..
for (i in 1:max(id.group1)) matlines(vall[id.group1 == i], ciValues[id.group1 == i,-1], type="l", lty=2, col=cols[i])
#matlines(vall, ciValues[,-1], type="l", lty=2, col=cols)
}
}
yhat <- x$family$linkinv(yhat)
if (length(cols) == 1) cols <- rep(cols, max(id.group))
if (length(lwds) == 1) lwds <- rep(lwds, max(id.group))
if (length(ltys) == 1) ltys <- rep(ltys, max(id.group))
for (i in 1:max(id.group)) {
lines(xhat[id.group == i], yhat[id.group == i], col = cols[i],
lwd = lwds[i], lty = ltys[i])
if(prev.trend) lines(xhat[xhat>est.psi[i]], x$family$linkinv((a[i]+b[i]*xhat)[xhat>est.psi[i]]), col=cols[i], lwd = lwds[i]*.65, lty = 2)
}
#-------------------------------------------------------------------------------
} else { #se LM o "GLM con link=TRUE (ovvero linkinv=FALSE)"
##---> transf!!!
y.val<- do.call(transf, list(y.val))
y.val1<-do.call(transf, list(y.val1))
r <- cbind(val, y.val)
r1 <- cbind(val, y.val1)
rr <- rbind(r, r1)
fit <- c(y.val, y.val1)
if (res) {
ress <- if (inherits(x, what = "glm", which = FALSE))
residuals(x, "working") #* sqrt(x$weights) mgcv::gam() usa " ..*sqrt(x$weights)/mean(sqrt(x$weights))"
else resid(x)
#if(!is.null(x$offset)) ress<- ress - x$offset
#fit <- broken.line(x, term, gap = show.gap, link = link, interc = TRUE) + ress + const
#fit <- predict.segmented(x, ifelse(rep(rev.sgn, length(xvalues)),-xvalues,xvalues), type=tipo) + ress + const
fit <- fit0 + ress + const
}
if (!add)
plot(rr, type = "n", xlab = xlabs, ylab = ylabs,
main = opz$main, sub = opz$sub,
xlim = opz$xlim,
cex.axis = opz$cex.axis,
cex.lab = opz$cex.lab,
#ylim = if(is.null(opz$ylim)) enl.range(fit, rangeCI, enlarge=dens.rug) else opz$ylim)
ylim = if(is.null(opz$ylim)) enl.range(fit, rangeCI, do.call(transf, list(m[, c(2,4)])), enlarge=dens.rug) else opz$ylim)
if(dens.rug){
density <- density(xvalues)
# the height of the densityity curve
max.density <- max(density$y)
# Get the boundaries of the plot to
# put the density polygon at the x-line
plot_coordinates <- par("usr")
# get the "length" and range of the y-axis
y.scale <- plot_coordinates[4] - plot_coordinates[3]
# transform the y-coordinates of the density
# to the lower 10% of the plotting panel
density$y <- (0.1 * y.scale / max.density) * density$y + plot_coordinates[3]
## plot the polygon
polygon(density$x , density$y , border = F , col = dens.col)
box()
}
if(rug) {segments(xvalues, rep(par()$usr[3],length(xvalues)), xvalues,
rep(par()$usr[3],length(xvalues))+ abs(diff(par()$usr[3:4]))/80)}
if (res) {
if(hide.zeros) {
fit <- fit[abs(xvalues)>1e-8]
xvalues <- xvalues[abs(xvalues)>1e-8]
}
if(is.null(smoos)) { smoos <- if(length(xvalues)>10000) TRUE else FALSE }
if(smoos){
smoothScatter(xvalues, fit, add=TRUE, nrpoints = 0, colramp= colorRampPalette(c("white", res.col)))
} else {
#browser()
points(xvalues, fit, cex = cexs, pch = pchs, col = res.col)
}
}
if(rev.sgn) vall<- -vall
if(conf.level>0) {
if(shade) {
polygon(c(vall, rev(vall)), c(ciValues[,2],rev(ciValues[,3])), col = col.shade, border=NA)
} else {
#infittire vall, soprattutto in prossimita' dei psi?
id.group1 <- cut(vall, val, labels=FALSE, include.lowest =TRUE, right=TRUE) #serve per gli IC..
for (i in 1:max(id.group1)) matlines(vall[id.group1 == i], ciValues[id.group1 == i,-1], type="l", lty=2, col=cols[i])
#VECCHIO: matlines(vall, ciValues[,-1], type="l", lty=2, col=cols)
}
}
#aggiunto 06/2019 perche' sotto disegnava linee (e non curve)
# segments(m[, 1], do.call(transf, list(m[, 2])), m[, 3], do.call(transf, list(m[, 4])),
# col = cols, lwd = lwds, lty = ltys)
#---
# modificato 8/2/21.. adesso le linee si uniscono sempre.
#.. con valori tipo 2010 (date), non si uniscono..
#comunque vall ha piu' valori di xout, quindi e' sufficiente assegnare xout<-vall (01/10/2021)
#xout <- sort(c(seq(val[1], val[length(val)], l = 50), val[-c(1, length(val))],
# pmax(val[-c(1, length(val))]*1.0001, val[-c(1, length(val))]*.9999)))
#if(rev.sgn) vall<- -vall
xout <- vall
l <- suppressWarnings(approx(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), xout = xout))
val[length(val)]<- if(rev.sgn) min(l$x) else max(l$x) #aggiunto 11/09/17; messo il if .. else 9/3/21
#id.group <- cut(l$x, val, labels=FALSE, include.lowest =TRUE, right=TRUE)
id.group <- cut(vall, val, labels=FALSE, include.lowest =TRUE, right=TRUE) #e' come id.group1
#---
xhat <- l$x
yhat <- l$y
yhat <- do.call(transf, list(yhat)) #transf(yhat)
if (length(cols) == 1) cols <- rep(cols, max(id.group))
if (length(lwds) == 1) lwds <- rep(lwds, max(id.group))
if (length(ltys) == 1) ltys <- rep(ltys, max(id.group))
for (i in 1:max(id.group)) {
lines(xhat[id.group == i], yhat[id.group == i], col = cols[i], lwd = lwds[i], lty = ltys[i])
#if(conf.level>0 && !shade) matlines(vall[id.group1 == i], ciValues[id.group1 == i,-1], type="l", lty=2, col=cols[i])
if(prev.trend) lines(xhat[xhat>est.psi[i]], (a[i]+b[i]*xhat)[xhat>est.psi[i]], col=cols[i], lwd = lwds[i]*.65, lty = 2)
}
# if(prev.trend){
# for(i in 1:(length(est.psi)+1)) lines(xhat[xhat>est.psi[i]], a[i]+b[i]*xhat)[xhat>est.psi[i]], col=cols[i], lwd = lwds[i]*.7, lty = 2)
# }
}
invisible(NULL)
}
}
|