File: plot.segmented.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (411 lines) | stat: -rw-r--r-- 20,054 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
plot.segmented<-function (x, term, add = FALSE, res = FALSE, conf.level = 0, 
                          interc=TRUE, link = TRUE, res.col = grey(.15, alpha = .4), rev.sgn = FALSE, const = NULL, 
                          shade=FALSE, rug=!add, dens.rug=FALSE, dens.col = grey(0.8),
                          transf=I, isV=FALSE, is=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, .coef=NULL, prev.trend=FALSE, 
                          smoos=NULL, hide.zeros=FALSE, leg="topleft", psi.lines=FALSE, ...){
  #put leg=NA if you do not want the legend..
  #funzione plot.segmented che consente di disegnare anche i pointwise CI
  f.U<-function(nomiU, term=NULL){
    #trasforma i nomi dei coeff U (o V) nei nomi delle variabili corrispondenti
    #and if 'term' is provided (i.e. it differs from NULL) the index of nomiU matching term are returned
    k<-length(nomiU)
    nomiUsenzaU<-strsplit(nomiU, "\\.")
    nomiU.ok<-vector(length=k)
    for(i in 1:k){
      nomi.i<-nomiUsenzaU[[i]][-1]
      if(length(nomi.i)>1) nomi.i<-paste(nomi.i,collapse=".")
      nomiU.ok[i]<-nomi.i
    }
    if(!is.null(term)) nomiU.ok<-(1:k)[nomiU.ok%in%term]
    return(nomiU.ok)
  }
  #-------------- 
  enl.range<-function(..., enlarge=TRUE){
    #modifica il min dei valori in ...
    r<-range(...)
    if(enlarge) r[1]<-if(sign(r[1])>0) r[1]*.9 else r[1]*1.1
    r
  }
  #--------------
  #se l'oggetto e' segmented.Arima il nome dell'eventuale interc va sostituito..
  #if((all(class(x)==c("segmented", "Arima")))) names(x$coef)<-gsub("intercept", "(Intercept)", names(coef(x)))
  if(all(c("segmented", "Arima") %in% class(x))) names(x$coef)<-gsub("intercept", "(Intercept)", names(x$coef))
  
  covv <- if(is.null(.vcov)) vcov(x, is=is, var.diff=var.diff) else .vcov 

  if(!is.null(.coef)) {
    estcoef<- .coef
    } else { 
      estcoef <- coef(x)
      if(is.null(estcoef)) estcoef <- x$coef
      if(is.null(estcoef)) stop("No coeffs in the fit? Please use '.coef'")
    }
  
  if(length(estcoef)==0) stop("No coefficient in the object fit?")
  
  #browser()
  if(!all(dim(covv)==c(length(estcoef), length(estcoef)))) stop("dimension of cov matrix and estimated coeffs do not match", call. = FALSE)
  
  #--------------
  linkinv <- !link
  if (inherits(x, what = "glm", which = FALSE) && linkinv && !is.null(x$offset) && res) stop("residuals with offset on the response scale?")
  if(conf.level< 0 || conf.level>.9999) stop("meaningless 'conf.level'")
  if ((inherits(x, what = "glm", which = FALSE) && linkinv) || res) {
    if(!(identical(transf, I) || identical(transf, "I"))) {transf<-I; warning("'transf' set to I with 'res=TRUE' and/or 'link=FALSE'.")}
  }
  if(missing(term)) {
    if (length(x$nameUV$Z) > 1) {
      stop("please, specify `term'")
    } else {
      term <- x$nameUV$Z
    }
  } else {
    #browser()
    if(is.numeric(term)) term <- x$nameUV$Z[term]
    #if(!is.character(term)) stop("please specify correctly 'term' ")
    #term<- deparse(substitute(term))
    #if(dterm %in% x$nameUV$Z) term<-dterm
    if (!isTRUE(all(term %in% x$nameUV$Z))) stop(paste("Unknown term. It should be numeric or one of: ", paste(" '", x$nameUV$Z, "' ", sep="", collapse="")))
  }
  
  if(length(term)>1){
    opz<-list(...)
    cols<- if(!is.null(opz$col)) opz$col else 1:length(term)+1
    cols <- rep(cols, l=length(term)) 
    res.cols<- rep(res.col, l=length(term))
    lwds<- if("lwd"%in% names(opz)) opz$lwd else 2
    lwds<- rep(lwds, l=length(term))
    ltys<- if("lty"%in% names(opz)) opz$lty else 1
    ltys<- rep(ltys, l=length(term))
    cexs<- if("cex"%in% names(opz)) opz$cex else .75
    cexs<- rep(cexs, l=length(term))
    pchs<- if("pch"%in% names(opz)) opz$pch else 19
    pchs<- rep(pchs, l=length(term))
    if(!is.null(opz$ylim)) {
      Ylim <- opz$ylim 
      } else {
        if(inherits(x, "glm")){
          if(link){
            Ylim <- if(!res) range(x$linear.predictors) else range(x$linear.predictors+x$residuals)
          } else {
            Ylim <- if(!res) range(x$fitted.values) else range(x$fitted.values+ residuals(x, "response"))
          }
        } else {
          Ylim <- if(!res) range(x$fitted.values) else range(x$fitted.values+x$residuals)
        }
        
      }
    Ylab <- if(!is.null(opz$ylab)) opz$ylab else paste(formula(x))[2]
    idTerm <- if(is.numeric(term)) term else match(term, x$nameUV$Z)
    nomeX <- intersect(strsplit(x$nameUV$Z,":")[[idTerm[1]]], unlist(strsplit(x$nameUV$Z,":")[idTerm[-1]]))
    Xlab <- if(!is.null(opz$xlab)) opz$xlab else nomeX
    Xlim<- if(!is.null(opz$xlim)) opz$xlim else range(x$model[,nomeX])
    int.all<-rep(NA, length(term))

    plot.segmented(x, term[1], add = add, res = res, conf.level = conf.level, 
                   interc=interc, link = link, res.col = res.cols[1], rev.sgn = rev.sgn, const = const, 
                   shade=shade, rug=FALSE, dens.rug=FALSE, dens.col = grey(0.8),
                   transf=I, isV=FALSE, is=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, .coef=NULL, prev.trend=FALSE, 
                   smoos=NULL, hide.zeros=TRUE, col=cols[1], ylim=Ylim, xlim=Xlim, ylab=Ylab,xlab=Xlab,
                   lty=ltys[1],pch=pchs[1],lwd=lwds[1],cex=cexs[1])
    Term<- if(is.numeric(term[1])) x$nameUV$Z[term[1]] else term[1]
    int.all[1]<-interc.gr<- strsplit(Term, ":")[[1]][2]
    points.segmented(x, term[1], col=cols[1], const=estcoef[interc.gr], v=psi.lines, pch=20, link=link)
    for(j in 2:length(term)){
      plot.segmented(x, term[j], add = TRUE, res = res, conf.level = conf.level, 
                     interc=interc, link = link, res.col = res.cols[j], rev.sgn = rev.sgn, const = const, 
                     shade=shade, rug=FALSE, dens.rug=FALSE, dens.col = grey(0.8),
                     transf=I, isV=FALSE, is=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, .coef=NULL, prev.trend=FALSE, 
                     smoos=NULL, hide.zeros=TRUE,col=cols[j],
                     lty=ltys[j],pch=pchs[j],lwd=lwds[j],cex=cexs[j])
      Term<- if(is.numeric(term[j])) x$nameUV$Z[term[j]] else term[j]
      int.all[j]<-interc.gr<- strsplit(Term, ":")[[1]][2]
      points.segmented(x, term[j], col=cols[j], const = estcoef[interc.gr], v=psi.lines, pch=20, link=link)
    }
    if(!is.na(leg)) {
      legend(leg, int.all, col=cols, lty=1, lwd=1.5, bty="n")
    }
  } else {
    if(is.null(const)){
      interc.gr<- strsplit(term, ":")[[1]][2]
      const<- estcoef[interc.gr]
      if(is.na(const)) const<-0
    }
    if(!is.numeric(const)) stop(" 'const' should be NULL (default) or numeric")
    opz <- list(...)
    col.shade<-if(!is.null(opz$col.shade)) adjustcolor(opz$col.shade, .15) else adjustcolor("grey", .4)
    cols<- if("col"%in% names(opz)) opz$col else 2
    lwds<- if("lwd"%in% names(opz)) opz$lwd else 2
    ltys<- if("lty"%in% names(opz)) opz$lty else 1
    cexs<- if("cex"%in% names(opz)) opz$cex else .75
    pchs<- if("pch"%in% names(opz)) opz$pch else 19
    ylabs<- if("ylab"%in% names(opz)) opz$ylab else paste("Effect  of ", term, sep = " ")
    xlabs<- if("xlab"%in% names(opz)) opz$xlab else term
  
    a <- intercept(x, term, digits=20, .vcov=covv, .coef=estcoef)[[1]][, "Est."]
    #Poiche' intercept() restituisce quantita' che includono sempre l'intercetta del modello, questa va eliminata se interc=FALSE
  
    idInterc<-grep("ntercept",names(estcoef))
    if(!interc && length(idInterc)==1) a<- a-estcoef[idInterc]
    b <- slope(x, term, digits=20, .coef=estcoef, .vcov=covv)[[1]][, "Est."]
  
    
    #browser()
    
    
    id <- f.U(rownames(x$psi), term)
    est.psi <- x$indexU[[term]]
    val <- sort(c(est.psi, x$rangeZ[, term]))
    #vettorializza i cols, lwds, ltys
    cols<-rep(cols, l=length(est.psi)+1)
    lwds<-rep(lwds, l=length(est.psi)+1)
    ltys<-rep(ltys, l=length(est.psi)+1)
    #---------aggiunta per gli IC
    rangeCI<-NULL
    vall<-sort(c(seq(min(val), max(val), l=100), est.psi, est.psi+1e-5))
    #ciValues<-predict.segmented(x, newdata=vall, se.fit=TRUE, type=tipo, level=conf.level)
    vall.list<-list(vall)
    names(vall.list)<-term
  
    if(conf.level>0) {
      k.alpha<- if(all(c("segmented","lm") %in% class(x))) abs(qt((1-conf.level)/2, x$df.residual)) else abs(qnorm((1-conf.level)/2))
      ciValues<-broken.line(x, vall.list, link=link, interc=interc, se.fit=TRUE, isV=isV, is=is, var.diff=var.diff, 
                          p.df=p.df, .vcov=covv, .coef=estcoef) #se gli passi covv, gli argomenti is e var.diff NON servono perche li ignora..
      ciValues<-cbind(ciValues$fit, ciValues$fit- k.alpha*ciValues$se.fit, ciValues$fit + k.alpha*ciValues$se.fit) + const
      #---> transf...
      ciValues<-apply(ciValues, 2, transf)
      rangeCI<-range(ciValues)
      #ciValues  e' una matrice di length(val)x3. Le 3 colonne: stime, inf, sup
      #polygon(c(vall, rev(vall)), c(ciValues[,2],rev(ciValues[,3])), col = "gray", border=NA)
    }
    #---------
    a.ok <- c(a[1], a)
    b.ok <- c(b[1], b)
    y.val <- a.ok + b.ok * val + const
    a.ok1 <- c(a, a[length(a)])
    b.ok1 <- c(b, b[length(b)])
    y.val <- y.val1 <- a.ok1 + b.ok1 * val + const
    s <- 1:(length(val) - 1)
    if(rev.sgn) val <- -val
    m <- cbind(val[s], y.val1[s], val[s + 1], y.val[s + 1])
    #xvalues <-  if(all(c("segmented", "Arima") %in% class(x))) x$Z[,1] else  model.matrix(x)[,term] #x$model[, term]
  
    #browser()
    if(res || dens.rug || rug){
      if(inherits(x,"Arima")){
        xvalues <-x$Z[,1]
      } else {
        M <- model.matrix.segmented(x)
        #il 18/4/24 mi sono accorto che con ogg ottenuti da segmented.* con leftmost pendenza nulla non funzionava
        #perche' model.matrix.segmented non restituiva la variabile (non inserita nel modello (g)lm di partenza..)
        if(!term %in% colnames(M) && term%in%names(x$model)) M<-cbind(M, x$model[,term,drop=FALSE] )
        if(term %in% colnames(M)) {
          xvalues <- M[,term]
          } else {
            id.segTerm<-which(sapply(names(x$nameUV$formulaSeg), function(.x) startsWith(term,.x)))
            xvalues <- model.matrix(x$nameUV$formulaSeg[[id.segTerm]], data=x$model)[,term]
          }
      }
      if(rev.sgn) xvalues <- -xvalues
    }
  #browser()
    if(res){
      new.d<-data.frame(ifelse(rep(rev.sgn, length(xvalues)),-xvalues, xvalues))
      names(new.d)<-term
      fit0 <- broken.line(x, new.d, link = link, interc=interc, se.fit=FALSE, .vcov=covv, .coef=estcoef)$fit
    }

  #-------------------------------------------------------------------------------

  if (inherits(x, what = "glm", which = FALSE) && linkinv) { #se GLM con link=FALSE (ovvero linkinv=TRUE)
    fit <- if (res)
      #predict.segmented(x, ifelse(rep(rev.sgn, length(xvalues)),-xvalues,xvalues), type=tipo) + resid(x, "response") + const
      #broken.line(x, term, gap = show.gap, link = link) + resid(x, "response") + const
      fit0 + resid(x, "response") + const        
    else x$family$linkinv(c(y.val, y.val1))
    xout <- sort(c(seq(val[1], val[length(val)], l = 50), val[-c(1, length(val))], 
                   pmax(val[-c(1, length(val))]*1.0001, val[-c(1, length(val))]*.9999)))
    l <- suppressWarnings(approx(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), xout = xout))
    val[length(val)]<- if(rev.sgn) min(l$x) else max(l$x) #aggiunto 11/09/17.. if else il 9/3/21
    
    id.group <- cut(l$x, val, labels=FALSE, include.lowest =TRUE, right=TRUE) 
    #xout <- sort(c(seq(val[1], val[length(val)], l = 150), val[-c(1, length(val))],val[-c(1, length(val))]*1.0001))
    #l <- suppressWarnings(approx(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), xout = xout))
    #val[length(val)]<-max(l$x) #aggiunto 11/09/17
    #id.group <- cut(l$x, val, FALSE, TRUE)
    yhat <- l$y
    xhat <- l$x
    m[, c(2, 4)] <- x$family$linkinv(m[, c(2, 4)])
    if (!add) {
      plot(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), 
           type = "n", xlab = xlabs, ylab = ylabs,
           main = opz$main, sub = opz$sub, 
           cex.axis = opz$cex.axis,
           cex.lab = opz$cex.lab,
           xlim = opz$xlim,
           ylim = if(is.null(opz$ylim)) enl.range(fit, rangeCI, enlarge=dens.rug) else opz$ylim 
           )
      if(dens.rug){
        density <- density(xvalues)
        # the height of the densityity curve
        max.density <- max(density$y)
        # Get the boundaries of the plot to
        # put the density polygon at the x-line
        plot_coordinates <- par("usr")
        # get the "length" and range of the y-axis
        y.scale <- plot_coordinates[4] - plot_coordinates[3]
        # transform the y-coordinates of the density
        # to the lower 10% of the plotting panel
        density$y <- (0.1 * y.scale / max.density) * density$y + plot_coordinates[3]
        ## plot the polygon
        polygon( density$x , density$y , border = FALSE , col = dens.col) 
        box()
      }
      
      if(rug) {
        #usare rug()?  
        segments(xvalues, rep(par()$usr[3],length(xvalues)), xvalues,
                 rep(par()$usr[3],length(xvalues))+ abs(diff(par()$usr[3:4]))/80)
      }
    }
    if (res) {
      if(hide.zeros) {
        fit <- fit[abs(xvalues)>1e-8]
        xvalues <- xvalues[abs(xvalues)>1e-8]
      }
      if(is.null(smoos)) { smoos <- if(length(xvalues)>10000) TRUE else FALSE }
      if(smoos){
        smoothScatter(xvalues, fit, add=TRUE, nrpoints = 0, colramp= colorRampPalette(c("white", res.col)))
      } else {
        points(xvalues, fit, cex = cexs, pch = pchs, col = res.col)
        
      }
    }
    if(conf.level>0){
      if(rev.sgn) vall<- -vall
      if(shade) {
        polygon(c(vall, rev(vall)), c(ciValues[,2],rev(ciValues[,3])),
                col = col.shade, border=NA) 
      } else {
        #browser()
        id.group1 <- cut(vall, val, labels=FALSE, include.lowest =TRUE, right=TRUE) #serve per gli IC..
        for (i in 1:max(id.group1)) matlines(vall[id.group1 == i], ciValues[id.group1 == i,-1], type="l", lty=2, col=cols[i])
        #matlines(vall, ciValues[,-1], type="l", lty=2, col=cols)
      }
    }
    
    yhat <- x$family$linkinv(yhat)
    if (length(cols) == 1) cols <- rep(cols, max(id.group))
    if (length(lwds) == 1) lwds <- rep(lwds, max(id.group))
    if (length(ltys) == 1) ltys <- rep(ltys, max(id.group))
    for (i in 1:max(id.group)) {
      lines(xhat[id.group == i], yhat[id.group == i], col = cols[i],
            lwd = lwds[i], lty = ltys[i])
      if(prev.trend) lines(xhat[xhat>est.psi[i]], x$family$linkinv((a[i]+b[i]*xhat)[xhat>est.psi[i]]), col=cols[i], lwd = lwds[i]*.65, lty = 2)
    }
    #-------------------------------------------------------------------------------
  } else { #se LM o "GLM con link=TRUE (ovvero linkinv=FALSE)"
    ##---> transf!!!
    y.val<- do.call(transf, list(y.val)) 
    y.val1<-do.call(transf, list(y.val1))
    r <- cbind(val, y.val)
    r1 <- cbind(val, y.val1)
    rr <- rbind(r, r1)
    fit <- c(y.val, y.val1)
    if (res) {
      ress <- if (inherits(x, what = "glm", which = FALSE))
        residuals(x, "working") #* sqrt(x$weights) mgcv::gam() usa " ..*sqrt(x$weights)/mean(sqrt(x$weights))"
      else resid(x)
      #if(!is.null(x$offset)) ress<- ress - x$offset
      #fit <- broken.line(x, term, gap = show.gap, link = link, interc = TRUE) + ress + const
      #fit <- predict.segmented(x, ifelse(rep(rev.sgn, length(xvalues)),-xvalues,xvalues), type=tipo) + ress + const
      fit <- fit0 + ress + const
    }
    if (!add)
      plot(rr, type = "n", xlab = xlabs, ylab = ylabs,
           main = opz$main, sub = opz$sub, 
           xlim = opz$xlim,
           cex.axis = opz$cex.axis,
           cex.lab = opz$cex.lab,
           #ylim = if(is.null(opz$ylim)) enl.range(fit, rangeCI, enlarge=dens.rug) else opz$ylim)
           ylim = if(is.null(opz$ylim)) enl.range(fit, rangeCI, do.call(transf, list(m[, c(2,4)])), enlarge=dens.rug) else opz$ylim)
    if(dens.rug){
      density <- density(xvalues)
      # the height of the densityity curve
      max.density <- max(density$y)
      # Get the boundaries of the plot to
      # put the density polygon at the x-line
      plot_coordinates <- par("usr")
      # get the "length" and range of the y-axis
      y.scale <- plot_coordinates[4] - plot_coordinates[3]
      # transform the y-coordinates of the density
      # to the lower 10% of the plotting panel
      density$y <- (0.1 * y.scale / max.density) * density$y + plot_coordinates[3]
      ## plot the polygon
      polygon(density$x , density$y , border = F , col = dens.col) 
      box()
    }
    if(rug) {segments(xvalues, rep(par()$usr[3],length(xvalues)), xvalues,
                      rep(par()$usr[3],length(xvalues))+ abs(diff(par()$usr[3:4]))/80)}
    if (res) {
      if(hide.zeros) {
        fit <- fit[abs(xvalues)>1e-8]
        xvalues <- xvalues[abs(xvalues)>1e-8]
      }
      if(is.null(smoos)) { smoos <- if(length(xvalues)>10000) TRUE else FALSE }
      if(smoos){
        smoothScatter(xvalues, fit, add=TRUE, nrpoints = 0, colramp= colorRampPalette(c("white", res.col)))
      } else {
        #browser()
        points(xvalues, fit, cex = cexs, pch = pchs, col = res.col)              
      }
    }
    if(rev.sgn) vall<- -vall
    if(conf.level>0) {
      if(shade) {
        polygon(c(vall, rev(vall)), c(ciValues[,2],rev(ciValues[,3])), col = col.shade, border=NA) 
      } else {
        #infittire vall, soprattutto in prossimita' dei psi?
        id.group1 <- cut(vall, val, labels=FALSE, include.lowest =TRUE, right=TRUE) #serve per gli IC..
        for (i in 1:max(id.group1)) matlines(vall[id.group1 == i], ciValues[id.group1 == i,-1], type="l", lty=2, col=cols[i])
        #VECCHIO: matlines(vall, ciValues[,-1], type="l", lty=2, col=cols)              
      }
    }
    #aggiunto 06/2019 perche' sotto disegnava linee (e non curve)
    #        segments(m[, 1], do.call(transf, list(m[, 2])), m[, 3], do.call(transf, list(m[, 4])), 
    #                col = cols, lwd = lwds, lty = ltys)
    #---
    # modificato 8/2/21.. adesso le linee si uniscono sempre.
    #.. con valori tipo 2010 (date), non si uniscono..
    #comunque vall ha piu' valori di xout, quindi e' sufficiente assegnare xout<-vall (01/10/2021)
    #xout <- sort(c(seq(val[1], val[length(val)], l = 50), val[-c(1, length(val))], 
    #              pmax(val[-c(1, length(val))]*1.0001, val[-c(1, length(val))]*.9999)))
    #if(rev.sgn) vall<- -vall
    xout <- vall
    l <- suppressWarnings(approx(as.vector(m[, c(1, 3)]), as.vector(m[, c(2, 4)]), xout = xout))
    val[length(val)]<- if(rev.sgn) min(l$x) else max(l$x) #aggiunto 11/09/17; messo il if .. else 9/3/21
    
    #id.group <- cut(l$x, val, labels=FALSE, include.lowest =TRUE, right=TRUE)
    id.group <- cut(vall, val, labels=FALSE, include.lowest =TRUE, right=TRUE) #e' come id.group1
    #---
    xhat <- l$x
    yhat <- l$y
    yhat <- do.call(transf, list(yhat)) #transf(yhat)
    if (length(cols) == 1) cols <- rep(cols, max(id.group))
    if (length(lwds) == 1) lwds <- rep(lwds, max(id.group))
    if (length(ltys) == 1) ltys <- rep(ltys, max(id.group))
    for (i in 1:max(id.group)) {
      lines(xhat[id.group == i], yhat[id.group == i], col = cols[i], lwd = lwds[i], lty = ltys[i])
      #if(conf.level>0 && !shade) matlines(vall[id.group1 == i], ciValues[id.group1 == i,-1], type="l", lty=2, col=cols[i])
      if(prev.trend) lines(xhat[xhat>est.psi[i]], (a[i]+b[i]*xhat)[xhat>est.psi[i]], col=cols[i], lwd = lwds[i]*.65, lty = 2)
    }
    #        if(prev.trend){
    #         for(i in 1:(length(est.psi)+1)) lines(xhat[xhat>est.psi[i]], a[i]+b[i]*xhat)[xhat>est.psi[i]], col=cols[i], lwd = lwds[i]*.7, lty = 2)
    #      }
  }
  invisible(NULL)
  }
}