1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#new predict.segmented
predict.segmented<-function(object, newdata, se.fit=FALSE, interval=c("none","confidence", "prediction"),
type = c("link", "response"), na.action=na.omit,# "terms"),
level=0.95, .coef=NULL, ...){
blockdiag <- function(...) {
args <- list(...)
nc <- sapply(args,ncol)
cumnc <- cumsum(nc)
## nr <- sapply(args,nrow)
## NR <- sum(nr)
NC <- sum(nc)
rowfun <- function(m,zbefore,zafter) {
cbind(matrix(0,ncol=zbefore,nrow=nrow(m)),m,
matrix(0,ncol=zafter,nrow=nrow(m)))
}
ret <- rowfun(args[[1]],0,NC-ncol(args[[1]]))
for (i in 2:length(args)) {
ret <- rbind(ret,rowfun(args[[i]],cumnc[i-1],NC-cumnc[i]))
}
ret
}
dummy.matrix<-function(x.values, x.name, obj.seg, psi.est=TRUE, isV=FALSE, .coef=NULL){
#given the segmented fit 'obj.seg' and a segmented variable x.name with corresponding values x.values,
#this function simply returns a matrix with columns (x, (x-psi)_+, -b*I(x>psi))
#if obj.seg does not include the coef for the linear "x", the returned matrix is ((x-psi)_+, -b*I(x>psi))
f.U<-function(nomiU, term=NULL){
#trasforma i nomi dei coeff U (o V) nei nomi delle variabili corrispondenti
#and if 'term' is provided (i.e. it differs from NULL) the index of nomiU matching term are returned
k<-length(nomiU)
nomiUsenzaU<-strsplit(nomiU, "\\.")
nomiU.ok<-vector(length=k)
for(i in 1:k){
nomi.i<-nomiUsenzaU[[i]][-1]
if(length(nomi.i)>1) nomi.i<-paste(nomi.i,collapse=".")
nomiU.ok[i]<-nomi.i
}
if(!is.null(term)) nomiU.ok<-(1:k)[nomiU.ok%in%term]
return(nomiU.ok)
}
estcoef <- if(is.null(.coef)) coef(obj.seg) else .coef
if(length(isV)==1) isV<-c(FALSE,isV)
n<-length(x.values)
#le seguenti righe selezionavano (ERRONEAMENTE) sia "U1.x" sia "U1.neg.x" (se "x" e "neg.x" erano segmented covariates)
#nameU<- grep(paste("\\.",x.name,"$", sep=""), obj.seg$nameUV$U, value = TRUE)
#nameV<- grep(paste("\\.",x.name,"$", sep=""), obj.seg$nameUV$V, value = TRUE)
nameU<-obj.seg$nameUV$U[f.U(obj.seg$nameUV$U,x.name)]
nameV<-obj.seg$nameUV$V[f.U(obj.seg$nameUV$V,x.name)] #grep(x.name, obj.seg$nameUV$V, value = TRUE)
if(is.null(obj.seg$constr)){
diffSlope<-estcoef[nameU]
} else {
diffSlope<-drop(obj.seg$constr$invA.RList[[match(x.name, obj.seg$nameUV$Z)]]%*%estcoef[nameU])[-1]
}
est.psi<-obj.seg$psi[nameV,"Est."]
se.psi<-obj.seg$psi[nameV, "St.Err"]
k<-length(est.psi)
PSI <- matrix(rep(est.psi, rep(n, k)), ncol = k)
SE.PSI <- matrix(rep(se.psi, rep(n, k)), ncol = k)
newZ<-matrix(x.values, nrow=n,ncol=k, byrow = FALSE)
dummy1<-if(isV[1]) (newZ-PSI)*pnorm((newZ-PSI)/SE.PSI) else (newZ-PSI)*(newZ>PSI) #pmax(newZ-PSI,0)
if(psi.est){
V<-if(isV[2]) -pnorm((newZ-PSI)/SE.PSI) else -(newZ>PSI) #ifelse(newZ>PSI,-1,0)
dummy2<- if(k==1) V*diffSlope else V%*%diag(diffSlope) #t(diffSlope*t(-I(newZ>PSI)))
newd<-cbind(x.values,dummy1,dummy2)
#colnames(newd)[1]<- x.name
colnames(newd)<-c(x.name,sub("psi","U", nameV), nameV)
} else {
newd<-cbind(x.values,dummy1)
#colnames(newd)[1]<- x.name
colnames(newd)<-c(x.name, sub("psi","U", nameV))
}
#if(!x.name%in%names(coef(obj.seg))) newd<-newd[,-1,drop=FALSE] #restituisce sempre il termine principale..
#aggiungi (eventualmente) le colonne relative ai psi noti
all.psi<-obj.seg$indexU[[x.name]]
if(length(all.psi)!=k){
nomi.psi.noti<-setdiff(names(all.psi),nameU)
psi.noti<-setdiff(all.psi, est.psi)
PSI.noti <- matrix(rep(psi.noti, rep(n, length(psi.noti))), ncol = length(psi.noti))
nomi<-c(colnames(newd),nomi.psi.noti)
newd<-cbind(newd, (newZ-PSI.noti)*(newZ>PSI.noti))
colnames(newd)<-nomi
}
return(newd)
}
estcoef <- if(is.null(.coef)) coef(object) else .coef
if(is.null(names(estcoef))) stop("the coef estimates should be named")
nLin<- length(setdiff(names(coef(object)), c(object$nameUV$U,object$nameUV$V)))
nSeg<- length(object$nameUV$Z)
type<-match.arg(type)
interval<-match.arg(interval)
#browser()
if(inherits(object, "glm") && object$family$family!="gaussian" && interval=="prediction")
stop("prediction intervals are not allowed with non-gaussian glm")
nameU<-object$nameUV$U
nameV<-object$nameUV$V
nameZ<-object$nameUV$Z
#browser()
if(missing(newdata)){
X <- model.matrix(object)
idNA<- rep(FALSE, nrow(X))
} else {
#browser()
#nomiLin <- setdiff(all.vars(formula(object))[-1], c(object$nameUV$U,object$nameUV$V))
nomiLin <- setdiff(all.vars(as.formula(paste("~",paste(formula(object))[3]))), c(object$nameUV$U,object$nameUV$V))
if(any(is.na(match(nomiLin, names(newdata))))) stop(" 'newdata' should includes all variables")
#devi trasformare la variabili segmented attraverso dummy.matrix()
na.arg <- deparse(substitute(na.action))
idNA<- !complete.cases(newdata)
if(any(idNA)){
newdata<-na.omit(newdata)
}
if(!na.arg%in%c("na.omit","na.pass")) stop("na.action should be 'na.omit' or 'na.pass'")
n<-nrow(newdata)
r<-NULL
if(length(object$call$obj)>0){ #se l'ogg e' stato ottenuto da segmented.*
# Fo<- formula(delete.response(terms(formula(eval(object$call$obj)))))
# idSeg<- object$nameUV$Z %in% all.vars(Fo)
# if(any(!idSeg)){
# Fo<- update.formula(Fo, as.formula(paste("~.+", paste(object$nameUV$Z[!idSeg], collapse="+"))))
# }
#nomiTerms, a differenza di nomiLin, include eventuali poly(w,2)
nomiTerms<-setdiff(attr(terms(formula(object)),"term.labels"),c(object$nameUV$U,object$nameUV$V))
idSeg<- object$nameUV$Z %in% nomiLin #potresti mettere anche "nomiTerms"
if(any(!idSeg)){
nomiTerms <- c(nomiTerms, object$nameUV$Z[!idSeg])
}
Fo<-as.formula(paste("~.+", paste(nomiTerms, collapse="+")))
M<-model.matrix(Fo, data=newdata,
contrasts=object$contrasts, xlev = object$xlevels)
} else { #se l'ogg e' stato ottenuto da segreg
#browser()
Fo<-as.formula(object$nameUV$formulaSegAllTerms)
if(any(all.vars(Fo)%in%names(object$xlevels))){
M<-model.matrix(Fo, data=newdata,
contrasts = object$contrasts, xlev=object$xlevels)
} else {
M<-model.matrix(Fo, data=newdata)
}
#nomiLin<- all.vars(object$formulaLin)[-1] #non funziona se la rispo e' cbind(y,n-y)
nomiLin <- all.vars(as.formula(paste("~",paste(object$formulaLin)[3])))
if(any(!nomiLin%in%all.vars(Fo))){
#nomiLinOK<- nomiLin[!nomiLin%in%all.vars(Fo)]
terminLin<-attr(terms(object$formulaLin),"term.labels")[!nomiLin%in%all.vars(Fo)]
Fo <- as.formula(paste("~.-1+",paste(terminLin,collapse="+")))
#Fo <- update.formula(Fo, as.formula(paste("~.+",paste(terminLin,collapse="+"))))
M1<-model.matrix(Fo, data=newdata,
contrasts = object$contrasts, xlev=object$xlevels)
M<-cbind(M, M1) #[,nomiLinOK,drop=FALSE])
}
}
for(i in 1:length(nameZ)){
x.values <- M[,nameZ[i]]
DM<-dummy.matrix(x.values, nameZ[i], object)
r[[i]]<-DM
}
#browser()
X <-data.matrix(matrix(unlist(r), nrow=n, byrow = FALSE))
colnames(X)<- unlist(sapply(r, colnames))
X<-cbind(M,X)
X<-X[,unique(colnames(X)),drop=FALSE]
if("(Intercept)" %in% names(estcoef)) X<-cbind("(Intercept)"=1,X)
}
if(!is.null(object$constr)){
for(i in 1:length(nameZ)){
nomeU.i<-grep(object$nameUV$Z[i], object$nameUV$U, value=TRUE)
idU.i <- match(nomeU.i, names(estcoef))
coef.new<-drop(object$constr$invA.RList[[i]]%*%estcoef[nomeU.i])
names(coef.new)<-c(object$nameUV$Z[i],
paste("U",1:(length(coef.new)-1),".",object$nameUV$Z[i],sep="" ))
estcoef<-append(estcoef[-idU.i], coef.new, after=idU.i[1]-1)
}
}
X<-X[,names(estcoef),drop=FALSE]
if(length(setdiff(colnames(X),names(estcoef)))>0) stop("error in the names (of the supplied newdata)")
#browser()
colnomi<- colnames(X)
colnomi.noV <- setdiff(colnomi, nameV)
X.noV <- X[, colnomi.noV, drop=FALSE]
estcoef.noV<- estcoef[colnomi.noV]
#ignora eventuali altre variabili contenute in newdata
#nomiOK<- intersect(names(estcoef.noV), colnames(X.noV))
#X.noV<- X.noV[, nomiOK, drop=FALSE]
#estcoef.noV<-estcoef.noV[nomiOK]
mu <- eta<- drop(X.noV%*% estcoef.noV)
if(!is.null(object$offset)) mu<- eta<- eta+ object$offset
X <- X[,c(colnomi.noV, nameV),drop=FALSE]
if(inherits(object, "glm") && type=="response") {
mu<-object$family$linkinv(mu)
}
#browser()
if(interval!="none" || se.fit){
V <- vcov(object)
if(!is.null(object$constr)){
B=if(nLin>0) append(list(diag(nLin)), object$constr$invA.RList, 1) else object$constr$invA.RList
B=append(B, list(diag(length(nameV))), 2)
B= do.call(blockdiag, B)
V <- B %*% V %*% t(B)
} else {
X <- X[,colnames(V)]
}
se <- sqrt(rowSums((X %*% V) * X))
if(inherits(object, "glm")) {
if(type=="response") se <- abs(object$family$mu.eta(eta))*se
z<-abs(qnorm((1-level)/2))
s2<-summary(object)$dispersion
} else {
z <- abs(qt((1-level)/2, df=object$df.residual))
s2<- summary(object)$sigma^2
}
if(any(idNA) && na.arg=="na.pass"){
mu0<-mu
se0<-se
mu<-se<- rep(NA, length(idNA))
mu[!idNA]<-mu0
se[!idNA]<-se0
}
if(interval=="confidence"){
mu<-cbind(fit=mu, lwr=mu-z*se, upr=mu+z*se)
}
if(interval=="prediction"){
mu<-cbind(fit=mu, lwr=mu-z*sqrt(se^2+s2), upr=mu+z*sqrt(se^2+s2))
}
} else {
if(any(idNA)&& na.arg=="na.pass"){
mu0<-mu
mu<- rep(NA, length(idNA))
mu[!idNA]<-mu0
}
}
if(se.fit) {
mu <- list(fit=mu, se.fit=se, df= object$df.residual, residual.scale=sqrt(s2))
if(!inherits(object, "glm")) mu$df<- object$df.residual
}
return(mu)
}
|