File: predict.segmented.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (274 lines) | stat: -rw-r--r-- 10,483 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#new predict.segmented
predict.segmented<-function(object, newdata, se.fit=FALSE, interval=c("none","confidence", "prediction"), 
            type = c("link", "response"), na.action=na.omit,# "terms"),
            level=0.95, .coef=NULL, ...){
  blockdiag <- function(...) {
    args <- list(...)
    nc <- sapply(args,ncol)
    cumnc <- cumsum(nc)
    ##  nr <- sapply(args,nrow)
    ## NR <- sum(nr)
    NC <- sum(nc)
    rowfun <- function(m,zbefore,zafter) {
      cbind(matrix(0,ncol=zbefore,nrow=nrow(m)),m,
            matrix(0,ncol=zafter,nrow=nrow(m)))
    }
    ret <- rowfun(args[[1]],0,NC-ncol(args[[1]]))
    for (i in 2:length(args)) {
      ret <- rbind(ret,rowfun(args[[i]],cumnc[i-1],NC-cumnc[i]))
    }
    ret
  }
  
  dummy.matrix<-function(x.values, x.name, obj.seg, psi.est=TRUE, isV=FALSE, .coef=NULL){ 
    #given the segmented fit 'obj.seg' and a segmented variable x.name with corresponding values x.values,
    #this function simply returns a matrix with columns (x, (x-psi)_+, -b*I(x>psi))
    #if obj.seg does not include the coef for the linear "x", the returned matrix is  ((x-psi)_+, -b*I(x>psi)) 
    f.U<-function(nomiU, term=NULL){
      #trasforma i nomi dei coeff U (o V) nei nomi delle variabili corrispondenti
      #and if 'term' is provided (i.e. it differs from NULL) the index of nomiU matching term are returned
      k<-length(nomiU)
      nomiUsenzaU<-strsplit(nomiU, "\\.")
      nomiU.ok<-vector(length=k)
      for(i in 1:k){
        nomi.i<-nomiUsenzaU[[i]][-1]
        if(length(nomi.i)>1) nomi.i<-paste(nomi.i,collapse=".")
        nomiU.ok[i]<-nomi.i
      }
      if(!is.null(term)) nomiU.ok<-(1:k)[nomiU.ok%in%term]
      return(nomiU.ok)
    }
    estcoef <- if(is.null(.coef)) coef(obj.seg) else .coef
    if(length(isV)==1) isV<-c(FALSE,isV)
    n<-length(x.values)
    #le seguenti righe selezionavano (ERRONEAMENTE) sia "U1.x" sia "U1.neg.x" (se "x" e "neg.x" erano segmented covariates)
    #nameU<- grep(paste("\\.",x.name,"$", sep=""), obj.seg$nameUV$U, value = TRUE)
    #nameV<- grep(paste("\\.",x.name,"$", sep=""), obj.seg$nameUV$V, value = TRUE)
    nameU<-obj.seg$nameUV$U[f.U(obj.seg$nameUV$U,x.name)]
    nameV<-obj.seg$nameUV$V[f.U(obj.seg$nameUV$V,x.name)] #grep(x.name, obj.seg$nameUV$V, value = TRUE)
    
    
    if(is.null(obj.seg$constr)){
      diffSlope<-estcoef[nameU]
    } else {
      diffSlope<-drop(obj.seg$constr$invA.RList[[match(x.name, obj.seg$nameUV$Z)]]%*%estcoef[nameU])[-1]
    }
    
    est.psi<-obj.seg$psi[nameV,"Est."]
    se.psi<-obj.seg$psi[nameV, "St.Err"]
    k<-length(est.psi)
    PSI <- matrix(rep(est.psi, rep(n, k)), ncol = k)
    SE.PSI <- matrix(rep(se.psi, rep(n, k)), ncol = k)
    newZ<-matrix(x.values, nrow=n,ncol=k, byrow = FALSE)
    
    
    dummy1<-if(isV[1]) (newZ-PSI)*pnorm((newZ-PSI)/SE.PSI) else  (newZ-PSI)*(newZ>PSI) #pmax(newZ-PSI,0)
    
    if(psi.est){
      V<-if(isV[2]) -pnorm((newZ-PSI)/SE.PSI) else -(newZ>PSI) #ifelse(newZ>PSI,-1,0)
      dummy2<- if(k==1) V*diffSlope  else V%*%diag(diffSlope) #t(diffSlope*t(-I(newZ>PSI)))
      newd<-cbind(x.values,dummy1,dummy2)
      #colnames(newd)[1]<- x.name
      colnames(newd)<-c(x.name,sub("psi","U", nameV), nameV)
    } else {
      newd<-cbind(x.values,dummy1)
      #colnames(newd)[1]<- x.name
      colnames(newd)<-c(x.name, sub("psi","U", nameV))
    }
    
    #if(!x.name%in%names(coef(obj.seg))) newd<-newd[,-1,drop=FALSE] #restituisce sempre il termine principale..
    #aggiungi (eventualmente) le colonne relative ai psi noti
    all.psi<-obj.seg$indexU[[x.name]]
    if(length(all.psi)!=k){
      nomi.psi.noti<-setdiff(names(all.psi),nameU)
      psi.noti<-setdiff(all.psi, est.psi)
      PSI.noti <- matrix(rep(psi.noti, rep(n, length(psi.noti))), ncol = length(psi.noti))
      nomi<-c(colnames(newd),nomi.psi.noti)
      newd<-cbind(newd, (newZ-PSI.noti)*(newZ>PSI.noti))
      colnames(newd)<-nomi
    }
    return(newd)
  }
  estcoef <- if(is.null(.coef)) coef(object) else .coef
  if(is.null(names(estcoef))) stop("the coef estimates should be named")
  nLin<- length(setdiff(names(coef(object)), c(object$nameUV$U,object$nameUV$V)))
  nSeg<- length(object$nameUV$Z)
  type<-match.arg(type)
  interval<-match.arg(interval)
  
  
  #browser()
  
  if(inherits(object, "glm") && object$family$family!="gaussian" && interval=="prediction") 
    stop("prediction intervals are not allowed with non-gaussian glm")
  nameU<-object$nameUV$U
  nameV<-object$nameUV$V
  nameZ<-object$nameUV$Z
  
  #browser()
  
  if(missing(newdata)){
    X <- model.matrix(object)
    idNA<- rep(FALSE, nrow(X))
  } else {
    #browser()
    #nomiLin <- setdiff(all.vars(formula(object))[-1], c(object$nameUV$U,object$nameUV$V))
    nomiLin <- setdiff(all.vars(as.formula(paste("~",paste(formula(object))[3]))), c(object$nameUV$U,object$nameUV$V))
    if(any(is.na(match(nomiLin, names(newdata))))) stop(" 'newdata' should includes all variables")
    #devi trasformare la variabili segmented attraverso dummy.matrix()
    
    na.arg <- deparse(substitute(na.action))
    idNA<- !complete.cases(newdata)
    if(any(idNA)){
      newdata<-na.omit(newdata)
    }
    if(!na.arg%in%c("na.omit","na.pass")) stop("na.action should be 'na.omit' or 'na.pass'")
    
    n<-nrow(newdata)
    r<-NULL
    if(length(object$call$obj)>0){ #se l'ogg e' stato ottenuto da segmented.*
      # Fo<- formula(delete.response(terms(formula(eval(object$call$obj)))))
      # idSeg<- object$nameUV$Z %in% all.vars(Fo)
      # if(any(!idSeg)){
      #   Fo<- update.formula(Fo, as.formula(paste("~.+", paste(object$nameUV$Z[!idSeg], collapse="+"))))
      # }
      
      #nomiTerms, a differenza di nomiLin, include eventuali poly(w,2)
      nomiTerms<-setdiff(attr(terms(formula(object)),"term.labels"),c(object$nameUV$U,object$nameUV$V))
      idSeg<- object$nameUV$Z %in% nomiLin #potresti mettere anche "nomiTerms"
      if(any(!idSeg)){
        nomiTerms <- c(nomiTerms, object$nameUV$Z[!idSeg])
      }
      
      Fo<-as.formula(paste("~.+", paste(nomiTerms, collapse="+")))
      
      M<-model.matrix(Fo, data=newdata,
              contrasts=object$contrasts, xlev = object$xlevels)
      
    } else { #se l'ogg e' stato ottenuto da segreg
      #browser()
      
      
      Fo<-as.formula(object$nameUV$formulaSegAllTerms)
      if(any(all.vars(Fo)%in%names(object$xlevels))){
        M<-model.matrix(Fo, data=newdata, 
                      contrasts = object$contrasts, xlev=object$xlevels)
      } else {
        M<-model.matrix(Fo, data=newdata)
      }
      
      #nomiLin<- all.vars(object$formulaLin)[-1] #non funziona se la rispo e' cbind(y,n-y)
      nomiLin <- all.vars(as.formula(paste("~",paste(object$formulaLin)[3])))
      
      if(any(!nomiLin%in%all.vars(Fo))){
        #nomiLinOK<- nomiLin[!nomiLin%in%all.vars(Fo)]
        terminLin<-attr(terms(object$formulaLin),"term.labels")[!nomiLin%in%all.vars(Fo)]
        Fo <- as.formula(paste("~.-1+",paste(terminLin,collapse="+")))
        #Fo <- update.formula(Fo, as.formula(paste("~.+",paste(terminLin,collapse="+"))))
        M1<-model.matrix(Fo, data=newdata, 
                contrasts = object$contrasts, xlev=object$xlevels)
        M<-cbind(M, M1) #[,nomiLinOK,drop=FALSE])
      }

    }
    
    for(i in 1:length(nameZ)){
      x.values <- M[,nameZ[i]] 
      DM<-dummy.matrix(x.values, nameZ[i], object)
      r[[i]]<-DM
    }
    
    #browser()
    X <-data.matrix(matrix(unlist(r), nrow=n, byrow = FALSE))
    colnames(X)<- unlist(sapply(r, colnames))
    X<-cbind(M,X)
    X<-X[,unique(colnames(X)),drop=FALSE]
    if("(Intercept)" %in% names(estcoef)) X<-cbind("(Intercept)"=1,X)
  }


  if(!is.null(object$constr)){
    for(i in 1:length(nameZ)){
        nomeU.i<-grep(object$nameUV$Z[i], object$nameUV$U, value=TRUE)
        idU.i <- match(nomeU.i, names(estcoef))
        coef.new<-drop(object$constr$invA.RList[[i]]%*%estcoef[nomeU.i])
        names(coef.new)<-c(object$nameUV$Z[i], 
                           paste("U",1:(length(coef.new)-1),".",object$nameUV$Z[i],sep="" ))
        estcoef<-append(estcoef[-idU.i], coef.new, after=idU.i[1]-1)
    }
  }
  X<-X[,names(estcoef),drop=FALSE]

  if(length(setdiff(colnames(X),names(estcoef)))>0) stop("error in the names (of the supplied newdata)")
  
  #browser()
  colnomi<- colnames(X)
  
  colnomi.noV <- setdiff(colnomi, nameV)
  X.noV <- X[, colnomi.noV, drop=FALSE]
  estcoef.noV<- estcoef[colnomi.noV]

  #ignora eventuali altre variabili contenute in newdata
  #nomiOK<- intersect(names(estcoef.noV), colnames(X.noV))
  #X.noV<- X.noV[, nomiOK, drop=FALSE]
  #estcoef.noV<-estcoef.noV[nomiOK]
  
  mu <- eta<- drop(X.noV%*% estcoef.noV)
  
  if(!is.null(object$offset)) mu<- eta<- eta+ object$offset

  X <- X[,c(colnomi.noV, nameV),drop=FALSE]

  if(inherits(object, "glm") && type=="response") {
    mu<-object$family$linkinv(mu) 
  }
  #browser()
  if(interval!="none" || se.fit){
    V <- vcov(object) 
    if(!is.null(object$constr)){
      B=if(nLin>0) append(list(diag(nLin)), object$constr$invA.RList, 1) else object$constr$invA.RList
      B=append(B, list(diag(length(nameV))), 2)
      B= do.call(blockdiag, B)
      V <- B %*% V %*% t(B)
    } else {
      X <- X[,colnames(V)]
    }
    se <- sqrt(rowSums((X %*% V) * X))
    if(inherits(object, "glm")) {
      if(type=="response") se <- abs(object$family$mu.eta(eta))*se
      z<-abs(qnorm((1-level)/2)) 
      s2<-summary(object)$dispersion
    } else {
      z <- abs(qt((1-level)/2, df=object$df.residual))
      s2<- summary(object)$sigma^2
    }
    
    if(any(idNA) && na.arg=="na.pass"){
      mu0<-mu
      se0<-se
      mu<-se<- rep(NA, length(idNA))
      mu[!idNA]<-mu0
      se[!idNA]<-se0
    }
    
    if(interval=="confidence"){
      mu<-cbind(fit=mu, lwr=mu-z*se, upr=mu+z*se)
    }
    if(interval=="prediction"){
      mu<-cbind(fit=mu, lwr=mu-z*sqrt(se^2+s2), upr=mu+z*sqrt(se^2+s2))
    }
  } else {
    if(any(idNA)&& na.arg=="na.pass"){
      mu0<-mu
      mu<- rep(NA, length(idNA))
      mu[!idNA]<-mu0
    }
  }
  if(se.fit) {
    mu <- list(fit=mu, se.fit=se, df= object$df.residual, residual.scale=sqrt(s2))
    if(!inherits(object, "glm")) mu$df<- object$df.residual
  }
  return(mu)
}