1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
segConstr.glm.fit.boot <- function(y, XREG, Z, PSI, w, offs, opz, n.boot=10, size.boot=NULL, jt=FALSE,
nonParam=TRUE, random=FALSE, break.boot=n.boot){
#random se TRUE prende valori random quando e' errore: comunque devi modificare qualcosa (magari con it.max)
# per fare restituire la dev in corrispondenza del punto psi-random
#nonParm. se TRUE implemneta il case resampling. Quello semiparam dipende dal non-errore di
#----------------------------------
# sum.of.squares<-function(obj.seg){
# #computes the "correct" SumOfSquares from a segmented" fit
# b<-obj.seg$obj$coef
# X<-qr.X(obj.seg$obj$qr) #X<-model.matrix(obj.seg)
# X<-X[,!is.na(b)]
# b<-b[!is.na(b)]
# rev.b<-rev(b)
# rev.b[1:length(obj.seg$psi)]<-0
# b<-rev(rev.b)
# new.fitted<-drop(X%*%b)
# new.res<- obj.seg$obj$residuals + obj.seg$obj$fitted - new.fitted
# ss<-sum(new.res^2)
# ss
# }
#--------
extract.psi<-function(lista){
#serve per estrarre il miglior psi..
dev.values<-lista[[1]]
psi.values<-lista[[2]]
if(any(is.na(psi.values[[1]]))) {#se la 1 componente e' NA (fino alla versione 2.0-3 era cosi'... perche' in dev.values c'erano
# anche i valori relativi al modello senza psi.. )
dev.values<-dev.values[-1] #remove the 1st one referring to model without psi
psi.values<-psi.values[-1]
}
dev.ok<-min(dev.values)
id.dev.ok<-which.min(dev.values)
if(is.list(psi.values)) psi.values<-matrix(unlist(psi.values),
nrow=length(dev.values), byrow=TRUE)
if(!is.matrix(psi.values)) psi.values<-matrix(psi.values)
psi.ok<-psi.values[id.dev.ok,]
r<-list(dev.no.gap=dev.ok, psi=psi.ok)
r
}
#-------------
if(is.null(opz$seed)){
mY <- mean(y)
sepDec<-if(options()$OutDec==".") "\\." else "\\,"
vv <- strsplit(paste(strsplit(paste(mY), sepDec)[[1]], collapse=""),"")[[1]]
vv<-vv[vv!="0"]
vv=na.omit(vv[1:5])
seed <-eval(parse(text=paste(vv, collapse="")))
if(is.null(seed)) seed <- 1
set.seed(seed)
} else {
if(is.na(opz$seed)) {
seed <-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
set.seed(seed)
} else {
seed <-opz$seed
set.seed(opz$seed)
}
}
#----------------
visualBoot<-opz$visualBoot
#opz.boot<-opz
#opz.boot$pow=c(1,1) #c(1.1,1.2)
opz1<-opz
opz1$it.max <- 0
n<-length(y)
rangeZ <- apply(Z, 2, range) #serve sempre
alpha <- opz$alpha
#limZ <- apply(Z, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))
limZ <- if(is.null(opz$limZ)) apply(Z, 2, quantile, names=FALSE, probs=c(alpha[1],alpha[2])) else opz$limZ
opz0 <- opz
opz0$maxit.glm <- 2
#o0<-try(suppressWarnings(seg.glm.fit(y, XREG, Z, PSI, w, offs, opz0)), silent=TRUE)
#mettere opz o opz0?
o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=FALSE)), silent=TRUE)
if(!is.list(o0)){
o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, opz$PSI1, w, offs, opz, return.all.sol=FALSE)), silent=TRUE)
}
if(!is.list(o0)) {
o0<- suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=TRUE))
o0<-extract.psi(o0)
ss00<-opz$dev0
if(!nonParam) {warning("using nonparametric boot");nonParam<-TRUE}
}
if(is.list(o0)){
est.psi00<-est.psi0<-o0$psi
ss00<- o0$dev.no.gap
if(!nonParam) fitted.ok<-fitted(o0)
} else {
if(!nonParam) stop("the first fit failed and I cannot extract fitted values for the semipar boot")
if(random) {
est.psi00<-est.psi0<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
ss00<-o0$dev.no.gap
} else {
est.psi00<-est.psi0<-apply(PSI,2,mean)
ss00<-opz$dev0
}
}
n.intDev0<-nchar(strsplit(as.character(ss00),"\\.")[[1]][1])
all.est.psi.boot<-all.selected.psi<-all.est.psi<-matrix(NA, nrow=n.boot, ncol=length(est.psi0))
all.ss<-all.selected.ss<-rep(NA, n.boot)
if(is.null(size.boot)) size.boot<-n
# na<- ,,apply(...,2,function(x)mean(is.na(x)))
Z.orig<-Z
# if(visualBoot) cat(0, " ", formatC(opz$dev0, 3, format = "f"),"", "(No breakpoint(s))", "\n")
count.random<-0
id.uguali<-0
k.psi.change<- 1
alpha<-.1
n.boot.rev<- 3 #3 o 4?
for(k in seq(n.boot)){
#if(k==4) browser()
##se gli *ultimi* n.boot.rev valori di ss sono uguali, cambia i psi...
diff.selected.ss <- rev(diff(na.omit(all.selected.ss)))
#if(length(na.omit(diff(all.selected.ss[1:n.boot.rev])))==(n.boot.rev-1) && all(round(diff(all.selected.ss[1:n.boot.rev]),6)==0)){
if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){
qpsi<-sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i]))
qpsi<-ifelse(abs(qpsi-.5)<.1, alpha, qpsi)
alpha<-1-alpha
est.psi0<-sapply(1:ncol(Z),function(i)quantile(Z[,i],probs=1-qpsi[i],names=FALSE))
}
########################### 25/7/24 #####
est.psi0 <- unlist(tapply(est.psi0, opz$id.psi.group, sort))
#########################################
PSI <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
if(jt) Z<-apply(Z.orig,2,jitter)
if(nonParam){
id<-sample(n, size=size.boot, replace=TRUE)
o.boot<-try(suppressWarnings(segConstr.glm.fit(y[id], XREG[id,,drop=FALSE], Z[id,,drop=FALSE], PSI[id,,drop=FALSE],
w[id], offs[id], opz)), silent=TRUE)
} else {
yy<-fitted.ok+sample(residuals(o0),size=n, replace=TRUE)
o.boot<-try(suppressWarnings(segConstr.glm.fit(yy, XREG, Z.orig, PSI, weights, offs, opz)), silent=TRUE)
}
if(is.list(o.boot)){
all.est.psi.boot[k,]<-est.psi.boot<-o.boot$psi
} else {
est.psi.boot<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
est.psi.boot<- unlist(tapply(est.psi.boot, opz$id.psi.group, sort))
}
#if(k==7) browser()
### se est.psi.boot non e' cambiato (e puoi vederlo da all.est.psi.boot), allora cambialo!
PSI <- matrix(est.psi.boot, n, ncol = length(est.psi.boot), byrow=TRUE)
#opz$h<-max(opz$h*.9, .2)
opz$it.max<-opz$it.max+1
o<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z.orig, PSI, w, offs, opz, return.all.sol=TRUE)), silent=TRUE)
if(!is.list(o) && random){
est.psi0<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
o<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
count.random<-count.random+1
}
#se il modello e' stato stimato controlla se la soluzione e' migliore..
if(is.list(o)){
if(!"coefficients"%in%names(o$obj)) o<-extract.psi(o)
all.est.psi[k,]<-o$psi
all.ss[k]<-o$dev.no.gap
if(o$dev.no.gap<=ifelse(is.list(o0), o0$dev.no.gap, 10^12)) {o0<-o; k.psi.change<- k}
est.psi0<-o0$psi
all.selected.psi[k,] <- est.psi0
all.selected.ss[k]<-o0$dev.no.gap #min(c(o$SumSquares.no.gap, o0$SumSquares.no.gap))
}
if(visualBoot) {
flush.console()
# spp <- if (it < 10) " " else NULL
# cat(paste("iter = ", spp, it,
# " dev = ",sprintf('%8.5f',L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
#n.intDev0<-nchar(strsplit(as.character(dev.values[2]),"\\.")[[1]][1])
cat(paste("boot sample = ", sprintf("%2.0f",k),
#" opt.dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), o0$dev.no.gap), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
" opt.dev = ", sprintf("%1.5f", as.numeric(strsplit(format(o0$dev.no.gap, scientific=TRUE), "e")[[1]][1])),
" n.psi = ",formatC(length(unlist(est.psi0)),digits=0,format="f"),
" est.psi = ",paste(formatC(unlist(est.psi0),digits=3,format="f"), collapse=" "), #sprintf('%.2f',x)
sep=""), "\n")
}
#conta i valori ss uguali.. cosi puoi fermarti prima..
asss<-na.omit(all.selected.ss)
if(length(asss)>break.boot){
if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break
}
#id.uguali<-(round(diff(all.selected.ss[c(k-1,k-2)]),6)==0)+id.uguali
} #end n.boot
all.selected.psi<-rbind(est.psi00,all.selected.psi)
all.selected.ss<-c(ss00, all.selected.ss)
#browser()
# SS.ok<-min(all.selected.ss)
# id.accept<- ((abs(all.ss-SS.ok)/SS.ok )<= 0.05)
# psi.mean<-apply(all.est.psi[id.accept,,drop=FALSE], 2, mean)
# est.psi0<-psi.mean
# devi ristimare il modello con psi.mean
# PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0))
# o0<-try(seg.lm.fit(y, XREG, Z, PSI1, w, offs, opz1), silent=TRUE)
ris<-list(all.selected.psi=drop(all.selected.psi),all.selected.ss=all.selected.ss, all.psi=all.est.psi, all.ss=all.ss)
if(is.null(o0$obj)){
#quando vengono restituiti psi troppo vicini e l'SE non si puo' calcolare, possiamo distanziarli..
#Pero' il processo deve essere esteso nel caso in cui ci sono 3 psi vicini..
min.n <- opz$min.n-1
if(min.n>1){
min1<- function(x, k=min.n-1){
for(i in 1:k) x<-x[-which.min(x)]
min(x)
}
max1<-function(x,k=min.n-1){
for(i in 1:k) x<-x[-which.max(x)]
max(x)
}
} else {
min1<-min
max1<-max
}
npsi <- tapply(opz$id.psi.group, opz$id.psi.group, length)
nomiAll <- colnames(rangeZ) #rep(opz$nomiSeg, npsi)
nomiSeg <- unique(nomiAll)
newPsi<-vector("list", length(npsi) )
for(.j in 1:length(npsi)){
psi.j <- sort(est.psi0[opz$id.psi.group==.j]) #psi della stessa variabile segmented
id <- nomiSeg[.j]==nomiAll
Z.ok <- unique(Z[, id, drop=FALSE][,1])
m.j <- min(limZ[1,id])
M.j <- max(limZ[2,id])
#h=1/1.05
for(.k in 1:length(psi.j)){
id.group<-cut(Z.ok, c(m.j-10^8, psi.j, M.j+10^8), labels=FALSE)
n.j<-tabulate(id.group)#<=min.n
#per ogni psi calcola il min e il max dei segmenti prima e dopo psi.
#se questi segmenti hanno min.n osservazioni considera u min e max fittizzi per evitare che il nuovo psi
#modificato porti a segmenti con bassa numerosita'..
M.j.k<- if(n.j[.k]>0) max1(Z.ok[id.group==.k]) -10^6*(n.j[.k]<=min.n) else -10^6*(n.j[.k]<=min.n)
m.j.k<- if(n.j[.k+1]>0) min1(Z.ok[id.group==.k+1])+10^6*(n.j[.k+1]<=min.n) else 10^6*(n.j[.k]<=min.n)
psi.j[.k]<- psi.j[.k] + ifelse(abs(M.j.k-psi.j[.k])<abs(m.j.k-psi.j[.k]), M.j.k-psi.j[.k]-.0001, m.j.k-psi.j[.k]+.0001 )
}
newPsi[[.j]]<-psi.j
} #end .j
est.psi0 <- unlist(newPsi)
PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
warning("Breakpoint estimate(s) outdistanced to allow finite estimates and st.errs", call.=FALSE, immediate.=TRUE)
#warning(" 'The final fit (if returned) could be unreliable. Reduce no. of psi or try to increase 'break.boot'", call.=FALSE, immediate.=TRUE)
#warning("'Convergence' is suspect: the final fit could be unreliable. Try to re-run by increasing 'break.boot'", call.=FALSE, immediate.=TRUE)
}
# if(is.null(o0$obj)){
# PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
# o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
# warning("The final fit can be unreliable (possibly mispecified segmented relationship)", call.=FALSE, immediate.=TRUE)
# }
if(!is.list(o0)) return(0)
o0$boot.restart<-ris
o0$seed <- seed
#rm(.Random.seed, envir=globalenv())
return(o0)
}
|