File: segConstr.glm.fit.boot.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (271 lines) | stat: -rw-r--r-- 13,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
segConstr.glm.fit.boot <- function(y, XREG, Z, PSI, w, offs, opz, n.boot=10, size.boot=NULL, jt=FALSE,
    nonParam=TRUE, random=FALSE, break.boot=n.boot){
#random se TRUE prende valori random quando e' errore: comunque devi modificare qualcosa (magari con it.max)
#     per fare restituire la dev in corrispondenza del punto psi-random
#nonParm. se TRUE implemneta il case resampling. Quello semiparam dipende dal non-errore di
#----------------------------------
#  sum.of.squares<-function(obj.seg){
#      #computes the "correct" SumOfSquares from a segmented" fit
#      b<-obj.seg$obj$coef
#      X<-qr.X(obj.seg$obj$qr) #X<-model.matrix(obj.seg)
#      X<-X[,!is.na(b)]
#      b<-b[!is.na(b)]
#      rev.b<-rev(b)
#      rev.b[1:length(obj.seg$psi)]<-0
#      b<-rev(rev.b)
#      new.fitted<-drop(X%*%b)
#      new.res<- obj.seg$obj$residuals + obj.seg$obj$fitted - new.fitted
#      ss<-sum(new.res^2)
#      ss
#      }
#--------
  extract.psi<-function(lista){
    #serve per estrarre il miglior psi..
    dev.values<-lista[[1]]
    psi.values<-lista[[2]]
    if(any(is.na(psi.values[[1]]))) {#se la 1 componente e' NA (fino alla versione 2.0-3 era cosi'... perche' in dev.values c'erano 
      #  anche i valori relativi al modello senza psi.. )
      dev.values<-dev.values[-1] #remove the 1st one referring to model without psi
      psi.values<-psi.values[-1]
    }
    dev.ok<-min(dev.values)
    id.dev.ok<-which.min(dev.values)
    if(is.list(psi.values))  psi.values<-matrix(unlist(psi.values),
                                                nrow=length(dev.values), byrow=TRUE)
    if(!is.matrix(psi.values)) psi.values<-matrix(psi.values)
    psi.ok<-psi.values[id.dev.ok,]
    r<-list(dev.no.gap=dev.ok, psi=psi.ok)
    r
  }
  #-------------
      if(is.null(opz$seed)){
        mY <- mean(y)
        sepDec<-if(options()$OutDec==".") "\\." else "\\,"
        vv <- strsplit(paste(strsplit(paste(mY), sepDec)[[1]], collapse=""),"")[[1]]
        vv<-vv[vv!="0"]
        vv=na.omit(vv[1:5])
        seed <-eval(parse(text=paste(vv, collapse="")))
        if(is.null(seed)) seed <- 1
        set.seed(seed)
      } else {
        if(is.na(opz$seed)) {
          seed <-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
          set.seed(seed)
        } else {
          seed <-opz$seed
          set.seed(opz$seed)
        }
      }  
      
      #----------------
      visualBoot<-opz$visualBoot
      #opz.boot<-opz
      #opz.boot$pow=c(1,1) #c(1.1,1.2)
      opz1<-opz
      opz1$it.max <- 0
      n<-length(y)
      rangeZ <- apply(Z, 2, range) #serve sempre
      
      alpha <- opz$alpha
      #limZ <- apply(Z, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))
      limZ <- if(is.null(opz$limZ)) apply(Z, 2, quantile, names=FALSE, probs=c(alpha[1],alpha[2])) else opz$limZ
      
      opz0 <- opz
      opz0$maxit.glm <- 2
      #o0<-try(suppressWarnings(seg.glm.fit(y, XREG, Z, PSI, w, offs, opz0)), silent=TRUE)
      #mettere opz o opz0?
      o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=FALSE)), silent=TRUE)
      if(!is.list(o0)){
        o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, opz$PSI1, w, offs, opz, return.all.sol=FALSE)), silent=TRUE)
      }
      if(!is.list(o0)) {
          o0<- suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=TRUE))
          o0<-extract.psi(o0)
          ss00<-opz$dev0
          if(!nonParam) {warning("using nonparametric boot");nonParam<-TRUE}
          }
      if(is.list(o0)){
        est.psi00<-est.psi0<-o0$psi
        ss00<- o0$dev.no.gap
        if(!nonParam) fitted.ok<-fitted(o0)
        } else {
          if(!nonParam) stop("the first fit failed and I cannot extract fitted values for the semipar boot")
          if(random) {
            est.psi00<-est.psi0<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
            PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
            o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
            ss00<-o0$dev.no.gap
          } else {
          est.psi00<-est.psi0<-apply(PSI,2,mean)
          ss00<-opz$dev0
        }
        }

      n.intDev0<-nchar(strsplit(as.character(ss00),"\\.")[[1]][1])
      
      all.est.psi.boot<-all.selected.psi<-all.est.psi<-matrix(NA, nrow=n.boot, ncol=length(est.psi0))
      all.ss<-all.selected.ss<-rep(NA, n.boot)
      if(is.null(size.boot)) size.boot<-n
#      na<- ,,apply(...,2,function(x)mean(is.na(x)))
      Z.orig<-Z
#     if(visualBoot) cat(0, " ", formatC(opz$dev0, 3, format = "f"),"", "(No breakpoint(s))", "\n")
      count.random<-0
      id.uguali<-0
      k.psi.change<- 1
      alpha<-.1
      n.boot.rev<- 3 #3 o 4?
      
      for(k in seq(n.boot)){
        #if(k==4) browser()
        ##se gli *ultimi* n.boot.rev valori di ss sono uguali, cambia i psi...
        diff.selected.ss <- rev(diff(na.omit(all.selected.ss)))
        #if(length(na.omit(diff(all.selected.ss[1:n.boot.rev])))==(n.boot.rev-1) && all(round(diff(all.selected.ss[1:n.boot.rev]),6)==0)){
        if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){
          qpsi<-sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i]))
          qpsi<-ifelse(abs(qpsi-.5)<.1, alpha, qpsi)
          alpha<-1-alpha
          est.psi0<-sapply(1:ncol(Z),function(i)quantile(Z[,i],probs=1-qpsi[i],names=FALSE))
        }
        ########################### 25/7/24 #####
        est.psi0 <- unlist(tapply(est.psi0, opz$id.psi.group, sort))
        #########################################
        PSI <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
        if(jt) Z<-apply(Z.orig,2,jitter)
        if(nonParam){
              id<-sample(n, size=size.boot, replace=TRUE)
              o.boot<-try(suppressWarnings(segConstr.glm.fit(y[id], XREG[id,,drop=FALSE], Z[id,,drop=FALSE], PSI[id,,drop=FALSE],
                w[id], offs[id], opz)), silent=TRUE)
        } else {
              yy<-fitted.ok+sample(residuals(o0),size=n, replace=TRUE)
              o.boot<-try(suppressWarnings(segConstr.glm.fit(yy, XREG, Z.orig, PSI, weights, offs, opz)), silent=TRUE)
        }
        if(is.list(o.boot)){
            all.est.psi.boot[k,]<-est.psi.boot<-o.boot$psi
        } else {
            est.psi.boot<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
            est.psi.boot<- unlist(tapply(est.psi.boot, opz$id.psi.group, sort))
        }
        #if(k==7) browser()
        ### se est.psi.boot non e' cambiato (e puoi vederlo da all.est.psi.boot), allora cambialo!
        
        
        PSI <- matrix(est.psi.boot, n, ncol = length(est.psi.boot), byrow=TRUE)
        #opz$h<-max(opz$h*.9, .2)
        opz$it.max<-opz$it.max+1
        o<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z.orig, PSI, w, offs, opz, return.all.sol=TRUE)), silent=TRUE)
        if(!is.list(o) && random){
                est.psi0<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
                PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
                o<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
                count.random<-count.random+1
        }
        #se il modello e' stato stimato controlla se la soluzione e' migliore..
        if(is.list(o)){
              if(!"coefficients"%in%names(o$obj)) o<-extract.psi(o)
              all.est.psi[k,]<-o$psi
              all.ss[k]<-o$dev.no.gap
              if(o$dev.no.gap<=ifelse(is.list(o0), o0$dev.no.gap, 10^12)) {o0<-o; k.psi.change<- k}
              est.psi0<-o0$psi
              all.selected.psi[k,] <- est.psi0
              all.selected.ss[k]<-o0$dev.no.gap #min(c(o$SumSquares.no.gap, o0$SumSquares.no.gap))
        }
            
        if(visualBoot) {
              flush.console()
              #      spp <- if (it < 10) " " else NULL
              #      cat(paste("iter = ", spp, it,
              #                "  dev = ",sprintf('%8.5f',L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
              #n.intDev0<-nchar(strsplit(as.character(dev.values[2]),"\\.")[[1]][1])
              cat(paste("boot sample = ", sprintf("%2.0f",k),
                    #"  opt.dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), o0$dev.no.gap), #formatC(L1,width=8, digits=5,format="f"), #era format="fg" 
                    "  opt.dev = ", sprintf("%1.5f", as.numeric(strsplit(format(o0$dev.no.gap, scientific=TRUE), "e")[[1]][1])),
                    "  n.psi = ",formatC(length(unlist(est.psi0)),digits=0,format="f"), 
                    "  est.psi = ",paste(formatC(unlist(est.psi0),digits=3,format="f"), collapse="  "), #sprintf('%.2f',x)
                    sep=""), "\n")
        }
        #conta i valori ss uguali.. cosi puoi fermarti prima..
        asss<-na.omit(all.selected.ss)
        if(length(asss)>break.boot){
          if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break
        }
        #id.uguali<-(round(diff(all.selected.ss[c(k-1,k-2)]),6)==0)+id.uguali      
        } #end n.boot

      all.selected.psi<-rbind(est.psi00,all.selected.psi)
      all.selected.ss<-c(ss00, all.selected.ss)

#browser()
      
      # SS.ok<-min(all.selected.ss)
      # id.accept<- ((abs(all.ss-SS.ok)/SS.ok )<= 0.05)
      # psi.mean<-apply(all.est.psi[id.accept,,drop=FALSE], 2, mean)
      # est.psi0<-psi.mean
      # devi ristimare il modello con psi.mean
      # PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0))
      # o0<-try(seg.lm.fit(y, XREG, Z, PSI1, w, offs, opz1), silent=TRUE)

      

      ris<-list(all.selected.psi=drop(all.selected.psi),all.selected.ss=all.selected.ss, all.psi=all.est.psi, all.ss=all.ss)

      if(is.null(o0$obj)){
        #quando vengono restituiti psi troppo vicini e l'SE non si puo' calcolare, possiamo distanziarli..
        #Pero' il processo deve essere esteso nel caso in cui ci sono 3 psi vicini..
        min.n <- opz$min.n-1
        if(min.n>1){
          min1<- function(x, k=min.n-1){
            for(i in 1:k) x<-x[-which.min(x)]
            min(x)
          }
          max1<-function(x,k=min.n-1){
            for(i in 1:k) x<-x[-which.max(x)]
            max(x)
          }
        } else {
          min1<-min
          max1<-max
        }
        npsi <- tapply(opz$id.psi.group, opz$id.psi.group, length)
        nomiAll <- colnames(rangeZ) #rep(opz$nomiSeg, npsi)
        nomiSeg <- unique(nomiAll)
        newPsi<-vector("list", length(npsi) )
        for(.j in 1:length(npsi)){
          psi.j <- sort(est.psi0[opz$id.psi.group==.j]) #psi della stessa variabile segmented
          id  <- nomiSeg[.j]==nomiAll
          Z.ok <- unique(Z[, id, drop=FALSE][,1])
          m.j <- min(limZ[1,id])
          M.j <- max(limZ[2,id])
          #h=1/1.05
          for(.k in 1:length(psi.j)){
            id.group<-cut(Z.ok, c(m.j-10^8, psi.j, M.j+10^8), labels=FALSE)
            n.j<-tabulate(id.group)#<=min.n
            #per ogni psi calcola il min e il max dei segmenti prima e dopo psi. 
            #se questi segmenti hanno min.n osservazioni considera u min e max fittizzi per evitare che il nuovo psi
            #modificato porti a segmenti con bassa numerosita'..
            M.j.k<- if(n.j[.k]>0) max1(Z.ok[id.group==.k])  -10^6*(n.j[.k]<=min.n) else -10^6*(n.j[.k]<=min.n) 
            m.j.k<- if(n.j[.k+1]>0) min1(Z.ok[id.group==.k+1])+10^6*(n.j[.k+1]<=min.n) else  10^6*(n.j[.k]<=min.n)
            psi.j[.k]<- psi.j[.k] + ifelse(abs(M.j.k-psi.j[.k])<abs(m.j.k-psi.j[.k]), M.j.k-psi.j[.k]-.0001, m.j.k-psi.j[.k]+.0001  )
          }
          newPsi[[.j]]<-psi.j
        } #end .j
        est.psi0 <- unlist(newPsi)
        PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
        o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
        warning("Breakpoint estimate(s) outdistanced to allow finite estimates and st.errs", call.=FALSE, immediate.=TRUE)
        #warning(" 'The final fit (if returned) could be unreliable. Reduce no. of psi or try to increase 'break.boot'", call.=FALSE, immediate.=TRUE)
        #warning("'Convergence' is suspect: the final fit could be unreliable. Try to re-run by increasing 'break.boot'", call.=FALSE, immediate.=TRUE)
      }
      
      
      
      # if(is.null(o0$obj)){
      #     PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
      #     o0<-try(suppressWarnings(segConstr.glm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE)
      #     warning("The final fit can be unreliable (possibly mispecified segmented relationship)", call.=FALSE, immediate.=TRUE)
      # }
      if(!is.list(o0)) return(0)
      o0$boot.restart<-ris
      o0$seed <- seed
      #rm(.Random.seed, envir=globalenv())
      return(o0)
      }