| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 
 | segmented.lme <- function(obj, seg.Z, psi, npsi=1, fixed.psi=NULL, control = seg.control(), model = TRUE,
                          z.psi=~1, x.diff=~1, 
                          random=NULL, #una lista quale 'list(id=pdDiag(~1+x+U+G0))'
                          random.noG=NULL, #una lista senza G0. Se NULL viene aggiornata la formula di random escludendo "G0"
                          start.pd=NULL, #una matrice come starting value
                          psi.link=c("identity","logit"), 
                          #nq=0, 
                          #adjust=0,
                          start=NULL, #*named* list list(delta0, delta, kappa) and the 'delta' component, dovrebbe essere anche
                          #nominata con i nomi delle variabili in x.diff
                          data,
                          fixed.parms=NULL,...){ #a *named* vector meaning the coefficients to be mantained fixed during the estimation
                          #, tol=0.0001, it.max=10, display=FALSE){
  #control = list(niterEM = 0, optimMethod = "L-BFGS-B")
  #method = "ML"
  ################################################################################
  
  #require(nlme)
  adj.psi <- function(psii, LIM) {
    pmin(pmax(LIM[1, ], psii), LIM[2, ])
  }
  
  newData<-aa<-betaa<-fn1<-kappa1<-NULL
  tol <- control$toll
  it.max <- control$it.max
  display <- control$visual
  n.boot <- control$n.boot
  alpha <- control$alpha
  if(is.null(alpha)) alpha<- max(.05, 1/obj$dims$N)
  if(length(alpha)==1) alpha<-c(alpha, 1-alpha)
  
  adjust=0 #ho rimosso dagli argomenti adjust=0, pero' devo ancora vederlo bene..
  
  
  psi.link<-match.arg(psi.link)
  logit<-function(xx,a,b){log((xx-a)/(b-xx))}
  inv.logit<-function(xx,a,b){((a+b*exp(xx))/(1+exp(xx)))}
  
  #obj is the lme fit or simply its call
  #random: a list with a formula for the cluster variable 'id' and standard linear variables and "U" and "G0" meaning
  #     random effects for the difference in slope and changepoint parameters. If it.max=0 the breakpoint is not estimated and
  #     the formula should not include the term "G0".
  #random = list(id=pdBlocked(list(pdDiag(~1+x), pdSymm(~U+G0-1))))
  #random = list(id=pdBlocked(list(pdSymm(~1+x), pdSymm(~U+G0-1))))
  #random=list(id=pdDiag(~1+weeks+U+G0))
  #random=list(id=pdSymm(~1+weeks+U+G0))
  #
  #Problemi: se control?
  #control = list(msVerbose = FALSE, niterEM = 100, opt = "optim")
  #
  #nq: no. obs che consentono di "invalidare" la stima del breakpoints.
  # Ovvero se nq=0, gli \hat{\psi}_i sono annullati se \hat{\psi}_i<=min(Z_i) o \hat{\psi}>=max(z_i)
  #        se nq>0 gli \hat{\psi}_i sono annullati se \hat{\psi}_i<=min(sort(z)[1:nq]) o \hat{\psi}>= max(rev(z)[1:nq]
  #adjust valore numerico (0,1,2).
  #   Se 0 i psi_i vengono stimati "normalmente" e alla convergenza al vettore numerico dei psi viene assegnato un
  #   vettore di attributi che serve ad etichettare se il breakpoint ? plausibile o meno (secondo il valore di nq)
  #   Se 1 i psi ottenuti alla fine dell'algoritm vengono aggiustati secondo il valore di nq. Ad es., se nq=1 il breakpoint
  #   immediatamente prima del max (o dopo il min) vengono forzati al min/max e cos? sono di fatto annullati; naturalmente il
  #   modello ? ristimato secondo  i nuovi psi. Se 2 l'aggiustamento viene fatto durante l'algoritmo..
  #---------------------
  reboot.slme <-function(fit, B=10, display=FALSE, break.boot=B, metodo=1, frac=1, it.max=6, it.max.b=5, seed=NULL, start=NULL, msg=TRUE){
    #metodo: viene passato alla funzione logL. Se 1 la logL che viene calcolata e' quella della componente
    #   fit$lme.fit.noG, namely the logLik from the lme fit without the G variables..
    #bootRestart for slme4
    #fit: un oggetto di classe "segmented.lme" (anche proveniente da un altra "bootsegMix" call)
    #frac: size of the boot resample..
    #start : un vettor con i nomi (se non fornito gli starting values sono presi da fit)
    #-----------------------
    extract.psi<-function(obj){
      #questa funzione restituisce i "kappa", ovvero i coeff di psi..
      nomiG<-obj$namesGZ$nomiG
      b<-fixef(obj[[1]])[c("G0",nomiG)]
      b
    }
    
    #-----------------------
    update.lme.call<-function (old.call, fixed., ..., evaluate=FALSE) {
      call <- old.call
      extras <- match.call(expand.dots = FALSE)$...
      if (!missing(fixed.)) call$fixed <- update.formula(call$fixed, fixed.)
      if (length(extras) > 0) {
        existing <- !is.na(match(names(extras), names(call)))
        for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
        if (any(!existing)) {
          call <- c(as.list(call), extras[!existing])
          call <- as.call(call)
        }
      }
      if (evaluate) eval(call, parent.frame()) else call
    }
    #---------
    #---------
    startKappa00<-extract.psi(fit)[1]
    Z <- fit$Z #segmented covariate
    rangeZ<-quantile(Z, c(.05,.95), names=FALSE)
    #quanti soggetti? Attenzione se ci sono nested re, sotto non funziona, o meglio da i livelli del outermost group
    
    #idLevels <- levels(fit$lme.fit$groups[,ncol(fit$lme.fit$groups)])
    #N<- length(idLevels)
    
    newData<-fit$lme.fit$data
    nomeRispo<-all.vars(formula(fit$lme.fit))[1]
    #AGGIUSTA la risposta
    newData[,nomeRispo]<-newData[,nomeRispo] + fit$Off
    
    nome.id <-names(fit$lme.fit$groups)[ncol(fit$lme.fit$groups)] #name of the innermost grouping variable 
    newData[, nome.id]<- factor(newData[, nome.id])
    var.id<-newData[, nome.id]
    idLevels<-levels(var.id)
    N<- length(idLevels)
    
    o.b<-fit$boot.call
    #old:    start.psi<-extract.psi(fit)
    #old:    est.psi<-start.psi["G0"]
    #old:    call.b<-update(object=fit, obj=o.b, data=newD, psi=est.psi, display=FALSE, evaluate=FALSE)
    call.b<-update(object=fit, obj=o.b, data=newD, it.max=it.max.b,
                   start=list(kappa0=startKappa0,kappa=startingKappa), display=FALSE, evaluate=FALSE)
    
    call.b$random <- fit$randomCALL
    
    o.ok<-update.lme.call(o.b, fixed.=paste(nomeRispo,"~."), evaluate=FALSE)
    #o.ok<-update.lme.call(o.b, fixed.=y~., evaluate=FALSE)
    #mycall$data=quote(gh)
    #o.ok<-update.lme.call(o.b, fixed.=y~.,evaluate=FALSE)
    #old:    call.ok<-update(object=fit, obj=o.ok, data=newData, psi=est.psi.b, display=FALSE, evaluate=FALSE)
    #o.ok$fixed<- update.formula(o.ok$fixed, paste(nomeRispo,"~."))
    
    call.ok<-update(object=fit, obj=o.ok, data=newData, it.max=it.max,
                    start=list(kappa0=startKappa0.b, kappa=startingKappa.b), display=FALSE, evaluate=FALSE)
    
    
    #call.ok$n.boot <- call.b$n.boot<-0
    call.ok$control <- call.b$control<-quote(seg.control(display=FALSE, n.boot=0))
    all.L<-all.psi<-NULL
    it<-0
    L0<-L.orig<-logLik(fit$lme.fit.noG)# logL(fit, metodo=metodo)
    if(display){
      flush.console()
      cat("original data:", 0, "  logLik =", formatC(as.numeric(L.orig), 3, format = "f"),"   psi parms:", formatC(extract.psi(fit),4,format="f"),"\n")
    }
    if(is.null(start)){
      startingKappa<-extract.psi(fit)
      startKappa0<- startingKappa[1]
      startingKappa<-startingKappa[-1]
      nomiKappa<-names(startingKappa)
      nomiKappa<-sapply(strsplit(nomiKappa, "G\\."),function(x)x[2])
      names(startingKappa) <- nomiKappa
    } else {
      nomiG<-sapply(strsplit(fit$namesGZ$nomiG, "G\\."),function(x)x[2])
      if(length(intersect(names(start), c("G0", nomiG)))!=length(start)) stop("'start' should include all the changepoint parameters")
      startKappa0<-start["G0"]
      startingKappa<-start[-which("G0"%in%names(start))]
      nomiKappa<-names(startingKappa)
    }
    #if(is.null(seed)) seed<-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
    if(is.null(seed)){
      mY <- mean(newData[,nomeRispo])
      sepDec<-if(options()$OutDec==".") "\\." else "\\,"
      vv <- strsplit(paste(strsplit(paste(mY), sepDec)[[1]], collapse=""),"")[[1]]
      vv<-vv[vv!="0"]
      vv=na.omit(vv[1:5])
      seed <-eval(parse(text=paste(vv, collapse="")))
      set.seed(seed)
    } else {
      if(is.na(seed)) {
        seed <-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
        set.seed(seed)
      } else {
        if(!is.numeric(seed)) stop(" 'seed' is not numeric") else set.seed(seed)
      }
    }  
    
    #browser()
    n.boot.rev<- 3
    alpha1<-alpha[1]
    for(i in seq(B)){
      diff.selected.ss <- rev(diff(na.omit(all.L)))
      if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){
        #qpsi<-sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i]))
        qpsi<- mean(startKappa0>Z)
        qpsi<-ifelse(abs(qpsi-.5)<.1, alpha1, qpsi)
        alpha1<-1-alpha1
        #est.psi0<-sapply(1:ncol(Z),function(i)quantile(Z[,i],probs=1-qpsi[i],names=FALSE))
        startKappa0 <- quantile(Z, probs=1-qpsi, names=FALSE)
      }
      
      #build the boot sample
      #idx<-sample(N, replace=TRUE)
      #idx<-sample(1:N, size=trunc(N*frac), replace=TRUE)
      idx<-sample(idLevels, size=trunc(N*frac), replace=TRUE)
      
      newD <- do.call("rbind",lapply(idx, function(x)newData[newData[,nome.id]==x,]))
      newD$y.b<- newD[,nomeRispo]
      
      #       r<-list(newD=newD, call.b=call.b)
      #       return(r)
      
      #-->>       CAMBIA STARTING VALUE in call.b
      if(startKappa0>=rangeZ[2] | startKappa0<=rangeZ[1] ) startKappa0<- jitter(startKappa00,factor=5) #sum(rangeZ)/2
      
      fit.b<-try(suppressWarnings(eval(call.b)), silent=TRUE) #envir=newD) 
      if(!is.list(fit.b)){
        #        fit.b<-NULL
        it.b<-0
        while(!is.list(fit.b)){
          idx<-sample(idLevels, size=trunc(N*frac), replace=TRUE)
          newD <- do.call("rbind",lapply(idx, function(x)newData[newData[,nome.id]==x,]))
          newD$y.b<- newD[,nomeRispo]
          startKappa0<- jitter(startKappa00,factor=5)
          fit.b<-try(suppressWarnings(eval(call.b)), silent=TRUE) #envir=newD)
          it.b<-it.b+1
          if(it.b>=10) break
        }
      }
      if(is.list(fit.b)){
        #old: start.psi.b<-extract.psi(fit.b)
        #old: est.psi.b<-start.psi.b["G0"]
        startingKappa.b<-extract.psi(fit.b)
        startKappa0.b<- startingKappa.b[1]
        startingKappa.b<-startingKappa.b[-1]
        #NB "nomiKappa" dovrebbero essere sempre gli stessi
        names(startingKappa.b) <- nomiKappa
        fit.ok<-try(suppressWarnings(eval(call.ok)), silent=TRUE) # data=newData)
        #L1<-if(is.list(fit.ok)) logL(fit.ok, metodo=metodo) else (-Inf)
        #22/05/18 aggiunto un altro tentativo... ho notato che l'insuccesso pu? dipendere dagli starting value..
        if(!is.list(fit.ok)){
          call.ok$start<-NULL
          fit.ok<-try(suppressWarnings(eval(call.ok)), silent=TRUE)
        }
        L1<-if(is.list(fit.ok)) as.numeric(logLik(fit.ok)) else (-Inf)
      } else {
        stop("the bootstrap fit is unsuccessful")
      }
      if(L0<L1) {
        fit<-fit.ok
        L0<-L1
      }
      all.psi[length(all.psi)+1]<-est.psi<-extract.psi(fit)["G0"]
      all.L[length(all.L)+1]<-L.ok<-max(L0,L1)
      it<-it+1
      if(display){
        flush.console()
        ll<-if(it<10) "  logLik =" else " logLik ="
        cat("boot resample:", it, ll, formatC(L.ok, 3, format = "f"),"   psi parms:", formatC(extract.psi(fit),4,format="f"),"\n")
      }
      startingKappa<-extract.psi(fit)
      startKappa0<- startingKappa[1]
      startingKappa<-startingKappa[-1]
      nomiKappa<-names(startingKappa)
      nomiKappa<-sapply(strsplit(nomiKappa, "G\\."),function(x)x[2])
      names(startingKappa) <- nomiKappa
      
      #conta i valori ss uguali per fermarsi prima..
       asss<-na.omit(all.L)
       if(length(asss)>break.boot){
         if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break
       }
      
    } #end boot replicates
    #============================================================================================
    fit$history.boot.restart<-cbind(b=1:length(all.psi),psi=all.psi, logL=all.L)
    fit$seed<-seed
    #r<-list(seg.lme.fit=fit, history=cbind(b=1:length(all.psi),psi=all.psi, logL=all.L) )
    if(msg) cat(" New solution(s) found:", length(unique(all.psi)), "\n")
    fit
  }
  #------------------
  fn.re<-function(obj){
    #restituisce un array n x n.ranef x terms
    #   n e' il n. totale delle misurazioni..
    #   n.ranef e' il n. dei random effects (tipicamente e' 1, >1 con nested..)
    #   terms e' il n. dei termini coinvolti nei random effects (ad es., intercept, x ..)
    ro<-ranef(obj)
    n.levels<- ncol(obj$groups) #n. dei livelli casuali (ad es., se nested..)
    if(n.levels<=1) {
      ro<-list(ro)
      names(ro)<-names(obj$groups)
    }
    nomi.levels<-names(obj$groups) #nomi degli effetti casuali names(ranef(obj))
    n.terms<-sapply(ro, ncol)
    nomiTermini<- unique(as.vector(unlist(sapply(ro, colnames))))
    tutti<-array(0, c(nrow(obj$groups), ncol(obj$groups), max(n.terms)), dimnames=list(NULL, names(obj$groups), nomiTermini))
    for(nome in nomiTermini){
      for(j in nomi.levels){
        if(nome %in% names(ro[[j]])){
          for(i in unique(obj$groups[,j])) tutti[obj$groups[,j]==i,j,nome] <- ro[[j]][rownames(ro[[j]])==i, nome]
        }
      }
    }
    tutti
  }
  #------------------
  update.lme.call<-function (old.call, fixed., ..., evaluate=FALSE) {
    call <- old.call
    extras <- match.call(expand.dots = FALSE)$...
    if (!missing(fixed.)) call$fixed <- update.formula(call$fixed, fixed.)
    if (length(extras) > 0) {
      existing <- !is.na(match(names(extras), names(call)))
      for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
      if (any(!existing)) {
        call <- c(as.list(call), extras[!existing])
        call <- as.call(call)
      }
    }
    if (evaluate) eval(call, parent.frame()) else call
  }
  #---------------------------------------------------------------------------
  f.pd<-function(obj){
    #dato un modello lme 'obj' restituisce una matrice pdMat che deve essere utilizzata come componente random
    #   nelle call "call.ok$random<-list(id=pd)"
    pdClasse<-class(obj$modelStruct$reStruct[[1]])[1]
    if(pdClasse=="pdBlocked"){ #assumiamo solo 2 blocchi..(? un LIMITE, ma ? facile generalizzare..)
      start.v<-unlist(lapply(obj$modelStruct$reStruct[[1]], function(z){as.numeric(z)}))
      cl1<-class(obj$modelStruct$reStruct[[1]][[1]])[1]
      cl2<-class(obj$modelStruct$reStruct[[1]][[2]])[1]
      fo1<-attr(obj$modelStruct$reStruct[[1]][[1]],"formula")
      fo2<-attr(obj$modelStruct$reStruct[[1]][[2]],"formula")
      no1<-attr(obj$modelStruct$reStruct[[1]][[1]],"Dimnames")[[1]]
      no2<-attr(obj$modelStruct$reStruct[[1]][[2]],"Dimnames")[[1]]
      pd<-pdBlocked(start.v, pdClass = c(cl1,cl2), nam = list(no1, no2), form=list(fo1, fo2))
    } else {
      fo<-attr(obj$modelStruct$reStruct[[1]],"formula")
      pd <- pdMat(as.numeric(obj$modelStruct$reStruct[[1]]), form = fo, pdClass = pdClasse)
    }
    pd}
  #---------------------------------------------------------------------------
  ###
  #browser()
  h <- control$h 
  if(!(is.call(obj) || class(obj)[1]=="lme")) stop(" 'obj' should be a lme fit or a lme call")
  if(missing(psi) && it.max==0) stop("Please supply 'psi' with 'it.max=0'")
  
  if(is.call(obj)) {
    my.call  <- obj
    datacall <- deparse(obj$data)
    if(is.null(random)) random<-eval(obj$random)      
  } else {
    my.call <- obj$call
    datacall<- deparse(obj$call$data)
    if(is.null(random)) random<-eval(obj$call$random)  
  }
  #my.call<-if(is.call(obj)) obj else obj$call
  #datacall<- if(is.call(obj)) deparse(obj$data) else deparse(obj$call$data)
  #if(is.null(random)) {random<- if(is.call(obj)) eval(obj$random) else eval(obj$call$random) }
  randomCALL<-random
  G0random<- sapply(random, function(.x) "G0" %in% all.vars(attr(.x, "formula")))
  if(it.max==0 && !any(G0random)) stop("'G0' in the random part is meaningless with 'it.max=0'")
  #    name.group<-nameRandom<-names(random)
  
  #    if(is.null(random)) {
  #      # A CHE SERVE????????????????
  #      random=list(
  #          id=pdMat(as.numeric(obj$modelStruct$reStruct[[1]]),
  #          form=attr(obj$modelStruct[[1]][[1]],"formula"),
  #          pdClass=class(obj$modelStruct$reStruct[[1]])[1]))
  
  #     randomCALL<- if(is.call(obj)) obj$random else obj$call$random
  #     } else {
  #	      randomCALL<- random
  #    }
  
  if (!is.null(random)) {
    if (is.list(random)) {
      nameRandom <- names(random) #nomi dei fattori id
      if(is.null(nameRandom)) stop("random argument must be a *named* list.")
      else if(sum(nameRandom == "")) stop("all elements of random list must be named")
    } else stop("random effects should be specified as named lists")
    random.vars <- c(unlist(lapply(random, function(x) all.vars(formula(x)))), nameRandom)
    names(random.vars)<-NULL #per evitare casini.. spesso i nomi erano le variabili stesse..
  } else random.vars <- NULL
  
  J<-length(random)
  
  #if(missing(Z) && missing(seg.Z)) stop(" 'Z' or 'seg.Z' should be provided")
  #name.Z<-if(missing(seg.Z)) deparse(substitute(Z)) else all.vars(seg.Z)
  
  if(missing(seg.Z)) stop(" 'seg.Z' should be provided")
  name.Z<- all.vars(seg.Z)
  if(length(name.Z)>1) stop("segmented.lme works with 1 breakpoint only")
  
  allNOMI<-unique(c(name.Z, all.vars(my.call$fixed), random.vars, all.vars(z.psi), all.vars(x.diff)))
  formTUTTI<-as.formula(paste("~.+", paste(allNOMI,collapse="+")))
  formTUTTI<-update.formula(my.call$fixed, as.formula(paste("~.+", paste(allNOMI,collapse="+"))))
  #U and G0 have not yet been defined
  formTUTTI<-update.formula(formTUTTI, .~.-U-G0)
  
  anyFixedG<-FALSE
  if(!is.null(fixed.parms)){
    name.fixed.butG0<-setdiff(names(fixed.parms),"G0") #nomi dei termini fissi escluso G0
    anyFixedG<-if(length(name.fixed.butG0)>=1) TRUE else FALSE #ci sono fixed coef nel submodel of psi?
    if(anyFixedG){
      formTUTTI<-update.formula(formTUTTI, as.formula(paste("~.+", paste(name.fixed.butG0,collapse="+"))))
    }
  }
  
  
  if(is.null(my.call$data)) stop("`obj' should include the argument `data'")
  if(missing(data)) {
    mf<-model.frame(formTUTTI, data=eval(my.call$data), na.action=na.omit)
  } else {
    mf<-model.frame(formTUTTI, data=data, na.action=na.omit)
  }
  
  
  
  #    if (length(allvars)) {
  #        mf$formula <- as.formula(paste(paste(deparse(gp$fake.formula, 
  #            backtick = TRUE), collapse = ""), "+", paste(allvars, 
  #            collapse = "+")))
  #        mf <- eval(mf, parent.frame())
  #    }
  
  #adesso si deve ordinare il dataframe..
  mf<-mf[order(mf[[nameRandom[J]]]),] 
  
  nomeRispo<-names(mf)[1]
  Rispo<-model.response(mf)
  #
  
  #browser()
  
  
  Z <- mf[[name.Z]]
  
  #limZ <- apply(Z, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))
  limZ <- as.matrix(quantile(Z, names = FALSE, probs = c(alpha[1], alpha[2])))
  
  min.Z<- min(limZ[,1])
  max.Z<- max(limZ[,1])
  
  
  
  
  
  
  
  #browser()
  
  if(!missing(psi)) {
    if(length(psi)>1) stop("segmented.lme works with 1 breakpoint only")
    if(psi<=min(limZ) || psi>=max(limZ)) stop("the provided psi is outside the range, see 'alpha' in seg.control()", call.=FALSE)
    }
  
  id <- mf[[nameRandom[J]]] #the innermost factor
  if(is.factor(id)) id <-factor(id, levels = unique(id)) 
  
  ni<- tapply(id, id, length) #vector of cluster sizes
  N<-length(ni)#n. of clusters (subjects)
  n<-length(id) #n. of total measurements
  
  id.x.diff<- FALSE
  id.z.psi <- FALSE
  #M.z.psi <- mf[all.vars(z.psi)] #
  #M.x.diff <- mf[all.vars(x.diff)] #
  
  M.z.psi <- model.matrix(z.psi, data = mf)
  if("(Intercept)"%in%colnames(M.z.psi)) M.z.psi<-M.z.psi[,-match("(Intercept)", colnames(M.z.psi)),drop=FALSE]
  M.x.diff <- model.matrix(x.diff, data = mf)
  if("(Intercept)"%in%colnames(M.x.diff)) M.x.diff<-M.x.diff[,-match("(Intercept)", colnames(M.x.diff)),drop=FALSE]
  
  fixed<-"U+G0" #fixed<-"U"
  nomiG<-NULL #se non ci sono explicative nel changepoint (se ci sono poi viene sovrascritto)
  namesGZ<-list(nameZ=name.Z)
  
  Offs.kappa<-0
  if(NCOL(M.z.psi)>0){
    id.z.psi <- TRUE
    Z.psi  <- data.matrix(M.z.psi)
    if(anyFixedG){
      if(!all(name.fixed.butG0 %in% colnames(M.z.psi))) stop("variable(s) in 'fixed.parms' should be included in 'z.psi'")
      Offs.kappa<-Fixed.z.psi<-drop(Z.psi[, name.fixed.butG0, drop=FALSE]%*% fixed.parms[name.fixed.butG0])
      Z.psi<-Z.psi[,setdiff(colnames(Z.psi), name.fixed.butG0), drop=FALSE]
    }
  if(ncol(Z.psi)>0){
      nomiG<-paste("G.",colnames(Z.psi),sep="") 
      namesGZ$nomiG<-nomiG
      fixed<-paste(fixed,paste(nomiG,collapse="+"),sep="+")
    } else {
      id.z.psi <- FALSE
    }
  } else { #se NCOL(M.z.psi)<=0
    if(anyFixedG) stop("variable(s) in 'fixed.parms' should be included in 'z.psi' ")
  }
  if(NCOL(M.x.diff)>0) {
    X.diff <- data.matrix(M.x.diff) 
    id.x.diff <- TRUE
    nomiUx<-paste("U.",colnames(M.x.diff),sep="")
    namesGZ$nomiUx<-nomiUx
    fixed<-paste(fixed,paste(nomiUx,collapse="+"),sep="+")
  }
  
  #==================================================================
  #Queste funzioni min1() e max1() restituiscono il "quasi" min o max
  # if(nq>0){
  #   min1<-function(x,na.rm=FALSE){x<-sort(x)[-(1:nq)];min(x,na.rm=na.rm)}
  #   max1<-function(x,na.rm=FALSE){x<-rev(x)[-(1:nq)];max(x,na.rm=na.rm)}
  # } else {
  #   min1<-min
  #   max1<-max
  # }
  # adjust<-max(min(adjust,2),0)  #solo 0,1,2 sono consentiti..
  # 
  # #==================================================================
  # 
  # min.Z<-min1(Z)
  # max.Z<-max1(Z)
  
  
  mf["U"]<- 1 #rep(1, n)
  #if(!is.null(obj$data)) my.dd<-cbind(obj$data,my.dd)
  #browser()
  #Qua ci possono essere 2 variabili di effetti casuali. Attenzione all'ordine.. il secondo!
  #if(name.group!="id") mf['id']<-mf[name.group] #costruisci un'altra variabile di clustering con il nome id
  #correzione per nested r.e: poich? id ? quello "giusto" (costruito prima), allora
  #
  mf['id']<-id #E' necessario costruire una nuova id con nome esattamente 'id'??!??!
  mf[name.Z]<- Z
  
  est.kappa0<-TRUE
  if("G0" %in% names(fixed.parms)) {
    est.kappa0<-FALSE
    kappa0<-kappa0Fixed<-fixed.parms["G0"]
  }
  if(est.kappa0){
    if(!is.null(start$kappa0)) {
      psi<-if(psi.link=="logit") inv.logit(start$kappa0,min.Z,max.Z) else start$kappa0
    }
    
    if(missing(psi)){
      #        formulaFix.Poly<-update.formula(my.call$fixed, paste("~.+",name.Z,"+",paste("I(",name.Z,"^2)",sep="")))
      #        obj2<-update.lme.call(my.call, fixed = formulaFix.Poly, data=mf, evaluate=TRUE)
      #        psi<- -fixed.effects(obj2)[name.Z]/(2*fixed.effects(obj2)[paste("I(",name.Z,"^2)",sep="")])
      psi<-tapply(Z, id, function(.x) sum(range(.x))/2)   
      if(any(psi <= min(Z))||any(psi>=max(Z))) stop("psi estimated by midvalues is outside the range") #the quadratic fit 
    }
  } else { #se e' fissato e quindi non devi stimarlo
    psi<- kappa0
  }
  
  
  #browser()
  
  
  psi.new <- psi #stime iniziali
  if(length(psi)!=1 && length(psi)!=N) stop("length(psi) has to be equal to 1 or n. of clusters")
  if(length(psi) == 1) {
    psi.new <- rep(psi.new, N) #subj-specific changepoints
  }
  psi.ex<-rep(psi.new, ni ) #length = N (n. tot obs)
  
  #----------------------------------------
  mf$U<- (Z-psi.ex)*(Z>psi.ex) #pmax(0, Z-psi.ex)
  formulaFix.noG<-update.formula(my.call$fixed, paste("~.+","U"))
  if(id.x.diff){
    Ux<- as.matrix(mf$U*X.diff)
    colnames(Ux)<-nomiUx
    mf<-cbind(mf,Ux) #$Ux<- my.dd$U*X.diff
    formulaFix.noG<-update.formula(my.call$fixed, paste(".~.+U+",paste(nomiUx,collapse="+"),sep=""))
  }
  #se vuoi assumere i psi fissi (it.max=0)
  if(it.max==0) {
    #aggiorna i random effects. Attenzione in tal caso random deve essere "U" ( o "1").
    #Se fosse "U+G0" darebbe errore perch? G0 non esiste
    #Oppure dovresti modificare la formula di random,
    #attr(random[[1]], "formula")<-update.formula(attr(random[[1]], "formula"), ~.-G0)
    formulaRand<-formulaRandOrig<-my.call$random
    call.ok<-update.lme.call(my.call, fixed = formulaFix.noG, random=random, data=mf, evaluate=FALSE)
    o<-eval(call.ok)
    return(o)
  } #end if(it.max=0)
  #---------------------------------------------------------------------------
  #should we fit a preliminary model? extract starting values
  start.delta0<-start$delta0
  if(id.x.diff) start.delta<-start$delta
  need.prelim<- (is.null(start.delta0) || (id.x.diff && is.null(start.delta)))
  
  if(need.prelim){
    random.noG <- random
    for(j in 1:J) attr(random.noG[[j]],"formula")<-update.formula(formula(random[[j]]), ~.-G0)
    o<-update.lme.call(my.call, fixed=formulaFix.noG, random=random.noG, data=mf, evaluate=TRUE)
    #o<-update.lme.call(my.call, fixed=formulaFix.noG, data=mf, evaluate=TRUE)
    delta0i<-unlist(coef(o)["U"]) #length= N
    if(id.x.diff) delta<-fixed.effects(o)[nomiUx] #length= n.1
  } else {
    delta0i<-if(length(start.delta0)==N) start.delta0 else rep(start.delta0,N)
    if(id.x.diff) delta<-start.delta[nomiUx]
  }
  
  start.kappa<-start$kappa
  
  eta.psi<-0
  
  if(id.z.psi) {
    if(is.null(start.kappa)) {
      kappa<- rep(0, ncol(Z.psi))
      names(kappa)<-nomiG
      eta.psi<-rep(0,nrow(Z.psi))
    } else {
      kappa<-start.kappa
      names(kappa)<-paste("G.",names(kappa),sep="")
      if((length(kappa)!=NCOL(M.z.psi)) || any(is.na(match(names(kappa), nomiG)))) stop("error in the names/length of start.kappa")
      eta.psi <- drop(Z.psi%*%kappa)
    }
  }
  #################################
  if(anyFixedG) eta.psi<- eta.psi + Offs.kappa
  #Offs.kappa<-data.matrix(mf[name.fixed.butG0])%*%fixed.parms[name.fixed.butG0]
  
  #-----------------------------------------------------------
  formulaFix<-update.formula(my.call$fixed, paste(".~.+",fixed))
  
  if(!est.kappa0) formulaFix<-update.formula(formulaFix, .~.-G0)
  formulaRand<-formulaRandOrig<-my.call$random
  minMax <- cbind(tapply(Z,id,min),tapply(Z,id,max)) #matrice nx2 dei min-max
  #---------------------------------------------------------
  call.ok<-update.lme.call(my.call, fixed = formulaFix, random=random, data=mf, evaluate=FALSE,
                           control = list(msVerbose = FALSE, niterEM = 100, opt = "optim"))
  if(!is.null(start.pd)) call.ok$random<-quote(list(id=start.pd))
  #--------------------------------------------------------
  kappa0i  <- if(psi.link=="logit") logit(psi.ex,min.Z,max.Z)  else psi.ex #length=n
  if(est.kappa0) kappa0<-mean(kappa0i)
  ki<- kappa0i - kappa0
  etai<- kappa0i + eta.psi
  psi.ex<-if(psi.link=="logit") inv.logit(etai,min.Z,max.Z) else etai  #length=n
  
  #----------------------------------------------------------
  boot.call<-update.lme.call(my.call, y.b~., data=newData, evaluate=FALSE) #salva la call before modifying obj
  it <- 1
  epsilon <- 9
  obj<-o #serve per estrarre la logLik
  b.new<-rep(.1,length(all.vars(formulaFix))) #la risposta conteggiata in all.vars(formulaFix) conta per l'intercetta
  while(abs(epsilon) > tol){
    #if(it==9) browser()
    DD<-if(psi.link=="logit") (max.Z-min.Z)*exp(etai)/((1+exp(etai))^2) else rep(1,n)
    V<-ifelse(Z >psi.ex, -1, 0)
    VD <- V*DD
    mf$U <- pmax(0, Z-psi.ex)
    mf$G0<- rep(delta0i,ni)*VD #rowSums(rep(delta0i,ni)*VD)
    if(id.x.diff){
      Ux<- as.matrix(mf$U*X.diff)
      colnames(Ux)<-nomiUx
      mf[,which(names(mf)%in%nomiUx)]<-Ux
      deltaMatrix<-cbind(rep(delta0i,ni), matrix(delta,nrow=length(V),ncol=length(delta),byrow=TRUE))
      deltaVDx<-deltaMatrix*VD*cbind(1,M.x.diff)
      mf$G0<-rowSums(deltaVDx)
    }
    if(id.z.psi){
      G<-cbind(mf$G0,mf$G0*M.z.psi)
      colnames(G)<-c("G0",nomiG)
      mf[,colnames(G)]<-G
    }
    dev.old <- obj$logLik
    #costruisci l'offset e modifica la risposta..
    Off<- if(est.kappa0)  -kappa0i*mf$G0 else -ki*mf$G0
    if(id.z.psi) Off<- Off - drop(as.matrix(mf[nomiG])%*%kappa[nomiG])
    mf[nomeRispo]<-Rispo-Off
    
    # estimate the model
    ########################################
    obj<-eval(call.ok)
    ########################################
    
    #formulaFix.noG
    #random.noG
    
    b.old<-b.new
    b.new<-fixed.effects(obj)
    ###    if(psi.new>max(Z)| psi.new<min(Z)) stop("estimated psi out of range: try another starting value!")
    dev.new <- obj$logLik#sum((fitted(obj)-my.dd[,paste(formula(obj))[2]])^2) #
    
    
    #===============================================================================
    if (display) {
      flush.console()
      spp <- if (it < 10) " " else NULL
      cat(paste("iter = ", spp, it,
                "  work.LL = ",formatC(dev.new,digits=3,format="f"), #era format="fg"
                "  diff.s = ",formatC(fixef(obj)["U"],digits=3,format="f"), 
                "  kappa0 = ",paste(formatC(fixef(obj)["G0"],digits=3, format="f"), collapse="  "),
                sep=""), "\n")
    }
    
    
    
    #===============================================================================
    epsilon <- abs((dev.new-dev.old)/(dev.old+.1))
    #epsilon <- max(abs((b.new-b.old)/b.old))
    #26/7/16 PERCHE' HO MESSO QUI i CRITERI DI ARRESTO? E' un problema perch? poi il ciclo non
    # termina e i "delta", "kappa0", rimangono quelli dell'iterazione precedente..
    #if(it >= it.max) break
    #if(abs(epsilon) <= tol) break
    it <- it+1
    #stopping rules not met: update the estimates
    ##-------------------------------
    continua<-  (abs(epsilon) > tol && it< it.max)
    #delta0i<-if(inflate.res) inflate.2residuals(obj, coeff=TRUE)[,"U"] else unlist(coef(obj)["U"])    #length=N
    if(id.x.diff) delta <- fixed.effects(obj)[nomiUx]
    
    delta0i <- unlist(coef(obj)["U"])
    kappa0.old <- kappa0 #length=1
    kappa0 <- fixed.effects(obj)["G0"]
    
    if(est.kappa0 && continua){
      kappa0<- if(psi.link=="identity")  adj.psi(kappa0, limZ) else max(min(9,kappa0),-9)
      kappa0 <- kappa0.old + (kappa0 - kappa0.old)*h/2 
      #questo controllo e' sbagliato se link.psi="logit"
      #if(kappa0<= min(Z) || kappa0>=max(Z)) stop("estimated psi outside the range")
    }
    
    
    
    #browser()
    
    kappa0i.old<-kappa0i #length=n
    
    #browser()
    RE<-fn.re(obj) # array n x n.randmEff (2 se sono nested..) x n.termini (U, G0,..) 
    ki<-if("G0" %in% dimnames(RE)[[3]]) rowSums(RE[ , ,"G0", drop=FALSE]) else rep(0,n)
    #NB    RE[ , ,"G0"]  ? una matrice di n.obs righe e che ha in ogni colonna i breakpoint relativi ad ogni livello di nesting.. 
    #      RE[ , J,"G0"] e' l'innermost J=ncol(RE[ , ,"G0"])
    #Quindi i ki sono la somma di tutti i termini random (anche a diversi livelli di nested)
    kappa0i <- kappa0+ki
    
    ########I codici sotto non funzionano con nested r.e.        
    #        ki<-if("G0"%in%names(ranef(obj))) unlist(ranef(obj)["G0"]) else rep(0,N)
    #        kappa0i <- kappa0+ki #length=N
    #        #kappa0i <-if(inflate.res) inflate.2residuals(obj, coeff=TRUE)[,"G0"] else unlist(coef(obj)["G0"]) #length=N
    #        kappa0i<-rep(kappa0i,ni) #+ kappa0i.old #length=n
    #        ki<-rep(ki,ni)
    ###########################
    
    etai<-kappa0i
    if(id.z.psi) {
      kappa.old<-kappa #length=1
      kappa<-fixed.effects(obj)[nomiG]  #esclude G0..
      etai<-etai+drop(Z.psi%*%kappa)
    }
    #questo e' se ci sono parametri con valori *fissati* da non stimare..
    if(anyFixedG){ 
      etai <- etai+ Offs.kappa
    }
    
    #browser()
    
    psi.old <- psi.ex #length=n.obs
    psi.ex<-if(psi.link=="logit") inv.logit(etai,min.Z,max.Z) else etai  #length=n
    #eventuale aggiustamento dei psi.
    #        if(adjust==2){
    #            id.bp<-I(psi.new>minMax[,1]&psi.new<minMax[,2])
    #            psi.new[!id.bp] <- tapply(Z,id,max)[!id.bp]# minMax[!id.bp,2]
    #            }
    
    #if(it==2) browser()
    
    if(it >= (it.max+1)) break
    #        if(abs(epsilon) <= tol) break #NON serve, c'? il while(abs(epsilon) > tol)
    
    #f.pd() la chiamo solo se non ci sono nested r.e. (perch? in quel caso non funziona..) 
    if(J<=1){ #se c'e' SOLO 1 r.e. 
      pd<-f.pd(obj)
      call.ok$random<-quote(list(id=pd))
    }
  } #end_while
  #---------------------------------------------------------------------------------------
  #Adesso devi fare in modo che le linee *veramente si uniscano (no salti), boot restarting e
  #valore di logLik ed infine aggiorna obj<-eval(call.ok)
  
  fixed.noG<-if(is.null(nomiG)) update.formula(call.ok$fixed, paste(".~.-G0",sep="")) 
  else update.formula(call.ok$fixed, paste(".~.-G0-",paste(nomiG, collapse="-"),sep=""))
  if(is.null(random.noG)){ #se "random.noG" non ? stato specificato in segmented.lme()
    random.noG<-random
    #Escludi G0 dalla formula random..
    #  -
    #18/6/16: mi sono reso conto che random pu? essere una lista che contiene diverse formula che includono "G0" (ad es., nel caso di r.e.), quindi "G0" si deve
    # eliminare in ogni formula..
    # Just now I don't know what happen if random is a block matrix.. VERIFICARE.. comunque il codice sotto c'e'..
    
    for(j in 1:J){ #J =n. di random cluster (a des., children %in% school,..)
      #questo sotto ? se random ? una lista e ogni sua componente ha una formula come "attributo".. Dovrebbero rientrare i casi di
      #semplici e nested r.e. NON con una matrice a blocchi..
      if(!is.null(attr(random.noG[[j]], "formula"))){ #semplici e nested r.e.
        if("G0"%in%all.vars(attr(random.noG[[j]], "formula"))){#se la formula della componente j contiene "G0"..
          attr(random.noG[[j]], "formula") <- update.formula(attr(random.noG[[j]], "formula"), ~.-G0)
        }
        #questo sotto e' se c'e' una matrice a blocchi..
      } else {
        #questo sotto e' se c'e' una matrice a blocchi..
        for(k in length(random.noG[[j]])) {
          if(!is.null(attr(random.noG[[j]][[k]], "formula"))){ #Questo ? se ci sono matrici a blocchi quando 
            if("G0"%in%all.vars(attr(random.noG[[j]][[k]], "formula"))){#se la formula della componente j contiene "G0"..
              attr(random.noG[[j]][[k]], "formula") <- update.formula(attr(random.noG[[j]][[k]], "formula"), ~.-G0)
            }
          }
        } #end k=1..K
      }
    } #end j=1..J 
  }
  
  call.ok.noG<-update.lme.call(call.ok, fixed = fixed.noG, random = random.noG)
  mf[nomeRispo]<-Rispo
  obj.noG<-eval(call.ok.noG)
  
  #if(it >= (it.max+1)) warning("max no. of iterations achieved.. refit.boot() suggested", call. = FALSE)
  psi.new<-psi.ex[cumsum(ni)]
  
  #5/7/18: rownames(ranef(obj)[[J]]) sono del tipo "1/1", cio? tengono conto di eventuali nested.. 
  #names(psi.new)<-rownames(ranef(obj)[[J]])
  
  
  #names(psi.new)<-levels(unlist(obj$groups))
  #names(psi.new)<-levels(id)
  ##27/6, nuovo:
  #se id e' numerica levels(id) e' NULL, per cui i psi.new sono senza nomi (e questo da errore in plot.segmented)
  #names(psi.new)<-levels(factor(id)) #funziona anche con nested r.e.??
  #browser()
  rnfGroups<-obj.noG$groups
  
  #names(psi.new)<-levels(rnfGroups[, ncol(rnfGroups)]) #levels ordina per i nomi "nuovi" (se c'? nested 4/10 lo considera prima di 4/9').. 
  names(psi.new)<-rownames(coef(obj.noG)) #oppure unique(rnfGroups[, ncol(rnfGroups)])
  attr(psi.new,which="ni")<-table(rnfGroups[, ncol(rnfGroups)]) 
  
  id.bp<-I(psi.new>=minMax[,1]&psi.new<=minMax[,2])
  attr(psi.new,which="is.break")<-id.bp
  
  #mf$rispo<-Rispo
  #o.new<-lme.formula(rispo ~ x + U + U.x.diff, data = mf, random=list(id=pdDiag(~1+x+U)), method=..)
  #return(o.new)
  
  if(adjust==1){
    #ristima il modello con i nuovi psi ( e le nuove variabili)
    psi.new[!id.bp] <- tapply(Z,id,max)[!id.bp]# minMax[!id.bp,2]
    psi.ex <- rep(psi.new, aa) #length=n.obs
    DD<-fn1(c(rep(kappa0,aa),kappa1), Z.psi ,2, link=psi.link) #length=n.obs
    V<-ifelse(Z >psi.ex, -1, 0)
    my.dd$U<- pmax(0, Z -psi.ex)
    VD <- V*DD
    deltaMatrix<-cbind(rep(betaa,aa), matrix(delta,nrow=length(V),ncol=length(delta),byrow=TRUE))
    deltaVDx<-deltaMatrix*VD*M.x.diff
    G0<-rowSums(deltaVDx)
    G<-G0*M.z.psi
    colnames(G)<-c("G0",paste("G.",colnames(M.z.psi)[-1],collapse="+",sep=""))
    my.dd<-cbind(my.dd, G)
    dev.old <- obj$logLik
    #stima il modello:
    obj<-eval(call.ok)
  }
  
  
  #if(id.z.psi) names(kappa)<- colnames(M.z.psi) #? gi? fatto prima
  RIS <- list("lme.fit"=obj, "lme.fit.noG"=obj.noG, "psi.i"=psi.new, call=match.call())
  if(!is.null(fixed.parms)) RIS$fixed.parms<-fixed.parms
  if(id.z.psi) {
    RIS$fixed.eta.psi<-drop(as.matrix(cbind(1,M.z.psi[cumsum(ni),]))%*%c(kappa0,kappa))
    names(RIS$fixed.eta.psi) <-names(psi.new)
  } else {
    RIS$fixed.eta.psi<-rep(kappa0, length(psi.new))
    names(RIS$fixed.eta.psi) <-names(psi.new)
  }
  if(id.x.diff) {
    RIS$fixed.eta.delta<-drop(as.matrix(cbind(1,M.x.diff[cumsum(ni),]))%*%fixef(obj)[c("U",nomiUx)])
    names(RIS$fixed.eta.delta) <-names(psi.new)
  } else {
    RIS$fixed.eta.delta<- rep(fixef(obj)["U"], length(psi.new))
    names(RIS$fixed.eta.delta) <-names(psi.new)
  }
  
  RIS$fixed.psi<-if(psi.link=="logit") inv.logit(RIS$fixed.eta.psi,min.Z,max.Z) else RIS$fixed.eta.psi
  #browser()
  names(RIS$fixed.psi) <- names(psi.new)
  RIS$call$psi.link<-psi.link #in questo modo il nome e' "completo"..
  RIS$boot.call<-boot.call
  RIS$randomCALL<-randomCALL
  RIS$misc$datacall<- datacall
  #browser()
  #RIS$misc$matrix.psi<- 
  if("G0" %in% dimnames(RE)[[3]]) {
    RIS$misc$matrix.psi<- cbind(fixed=RIS$fixed.psi,drop(RE[cumsum(ni), , "G0", drop = FALSE]))
    colnames(RIS$misc$matrix.psi) <- c("fixed", names(obj$groups))
    rownames(RIS$misc$matrix.psi) <- names(psi.new)#rownames(ranef(obj)[[J]])    
  } else {
    RIS$misc$matrix.psi<- matrix(RIS$fixed.psi, ncol=1) #fixed=RIS$fixed.psi)
    rownames(RIS$misc$matrix.psi) <- names(psi.new)#rownames(ranef(obj)[[J]])    
  }
  
  RIS$namesGZ<-namesGZ
  RIS$Off<-Off
  RIS$rangeZ<- tapply(Z, id, range)
  names(Z)<-id #names(psi.new)
  RIS$Z<-Z
  #browser()
  class(RIS)<- "segmented.lme" #c("segmented.lme","segmented")
  #opz.control<-list(...)
  #if(!is.null(opz.control$n.boot)) n.boot<- opz.control$n.boot
  if(it >= (it.max+1) && n.boot==0) warning("max no. of iterations achieved.. 'n.boot>0' suggested", call. = FALSE)
  if(n.boot>0){
    if(display) cat("Implementing bootstrap restarting..\n")
    RIS <- reboot.slme(RIS, B=n.boot, display=display, break.boot=control$break.boot ,
                       seed=control$seed, msg=display)#, metodo=1, frac=1, it.max=6, it.max.b=5, start=NULL, msg=TRUE)
  }
  RIS
}
 |