File: segmented.lme.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (905 lines) | stat: -rw-r--r-- 39,430 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
segmented.lme <- function(obj, seg.Z, psi, npsi=1, fixed.psi=NULL, control = seg.control(), model = TRUE,
                          z.psi=~1, x.diff=~1, 
                          random=NULL, #una lista quale 'list(id=pdDiag(~1+x+U+G0))'
                          random.noG=NULL, #una lista senza G0. Se NULL viene aggiornata la formula di random escludendo "G0"
                          start.pd=NULL, #una matrice come starting value
                          psi.link=c("identity","logit"), 
                          #nq=0, 
                          #adjust=0,
                          start=NULL, #*named* list list(delta0, delta, kappa) and the 'delta' component, dovrebbe essere anche
                          #nominata con i nomi delle variabili in x.diff
                          data,
                          fixed.parms=NULL,...){ #a *named* vector meaning the coefficients to be mantained fixed during the estimation
                          #, tol=0.0001, it.max=10, display=FALSE){
  #control = list(niterEM = 0, optimMethod = "L-BFGS-B")
  #method = "ML"
  ################################################################################
  
  #require(nlme)
  adj.psi <- function(psii, LIM) {
    pmin(pmax(LIM[1, ], psii), LIM[2, ])
  }
  
  newData<-aa<-betaa<-fn1<-kappa1<-NULL
  tol <- control$toll
  it.max <- control$it.max
  display <- control$visual
  n.boot <- control$n.boot
  alpha <- control$alpha
  if(is.null(alpha)) alpha<- max(.05, 1/obj$dims$N)
  if(length(alpha)==1) alpha<-c(alpha, 1-alpha)
  
  adjust=0 #ho rimosso dagli argomenti adjust=0, pero' devo ancora vederlo bene..
  
  
  psi.link<-match.arg(psi.link)
  logit<-function(xx,a,b){log((xx-a)/(b-xx))}
  inv.logit<-function(xx,a,b){((a+b*exp(xx))/(1+exp(xx)))}
  
  #obj is the lme fit or simply its call
  #random: a list with a formula for the cluster variable 'id' and standard linear variables and "U" and "G0" meaning
  #     random effects for the difference in slope and changepoint parameters. If it.max=0 the breakpoint is not estimated and
  #     the formula should not include the term "G0".
  #random = list(id=pdBlocked(list(pdDiag(~1+x), pdSymm(~U+G0-1))))
  #random = list(id=pdBlocked(list(pdSymm(~1+x), pdSymm(~U+G0-1))))
  #random=list(id=pdDiag(~1+weeks+U+G0))
  #random=list(id=pdSymm(~1+weeks+U+G0))
  #
  #Problemi: se control?
  #control = list(msVerbose = FALSE, niterEM = 100, opt = "optim")
  #
  #nq: no. obs che consentono di "invalidare" la stima del breakpoints.
  # Ovvero se nq=0, gli \hat{\psi}_i sono annullati se \hat{\psi}_i<=min(Z_i) o \hat{\psi}>=max(z_i)
  #        se nq>0 gli \hat{\psi}_i sono annullati se \hat{\psi}_i<=min(sort(z)[1:nq]) o \hat{\psi}>= max(rev(z)[1:nq]
  #adjust valore numerico (0,1,2).
  #   Se 0 i psi_i vengono stimati "normalmente" e alla convergenza al vettore numerico dei psi viene assegnato un
  #   vettore di attributi che serve ad etichettare se il breakpoint ? plausibile o meno (secondo il valore di nq)
  #   Se 1 i psi ottenuti alla fine dell'algoritm vengono aggiustati secondo il valore di nq. Ad es., se nq=1 il breakpoint
  #   immediatamente prima del max (o dopo il min) vengono forzati al min/max e cos? sono di fatto annullati; naturalmente il
  #   modello ? ristimato secondo  i nuovi psi. Se 2 l'aggiustamento viene fatto durante l'algoritmo..
  #---------------------
  reboot.slme <-function(fit, B=10, display=FALSE, break.boot=B, metodo=1, frac=1, it.max=6, it.max.b=5, seed=NULL, start=NULL, msg=TRUE){
    #metodo: viene passato alla funzione logL. Se 1 la logL che viene calcolata e' quella della componente
    #   fit$lme.fit.noG, namely the logLik from the lme fit without the G variables..
    #bootRestart for slme4
    #fit: un oggetto di classe "segmented.lme" (anche proveniente da un altra "bootsegMix" call)
    #frac: size of the boot resample..
    #start : un vettor con i nomi (se non fornito gli starting values sono presi da fit)
    #-----------------------
    extract.psi<-function(obj){
      #questa funzione restituisce i "kappa", ovvero i coeff di psi..
      nomiG<-obj$namesGZ$nomiG
      b<-fixef(obj[[1]])[c("G0",nomiG)]
      b
    }
    
    #-----------------------
    update.lme.call<-function (old.call, fixed., ..., evaluate=FALSE) {
      call <- old.call
      extras <- match.call(expand.dots = FALSE)$...
      if (!missing(fixed.)) call$fixed <- update.formula(call$fixed, fixed.)
      if (length(extras) > 0) {
        existing <- !is.na(match(names(extras), names(call)))
        for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
        if (any(!existing)) {
          call <- c(as.list(call), extras[!existing])
          call <- as.call(call)
        }
      }
      if (evaluate) eval(call, parent.frame()) else call
    }
    #---------
    #---------
    startKappa00<-extract.psi(fit)[1]
    Z <- fit$Z #segmented covariate
    rangeZ<-quantile(Z, c(.05,.95), names=FALSE)
    #quanti soggetti? Attenzione se ci sono nested re, sotto non funziona, o meglio da i livelli del outermost group
    
    #idLevels <- levels(fit$lme.fit$groups[,ncol(fit$lme.fit$groups)])
    #N<- length(idLevels)
    
    newData<-fit$lme.fit$data
    nomeRispo<-all.vars(formula(fit$lme.fit))[1]
    #AGGIUSTA la risposta
    newData[,nomeRispo]<-newData[,nomeRispo] + fit$Off
    
    nome.id <-names(fit$lme.fit$groups)[ncol(fit$lme.fit$groups)] #name of the innermost grouping variable 
    newData[, nome.id]<- factor(newData[, nome.id])
    var.id<-newData[, nome.id]
    idLevels<-levels(var.id)
    N<- length(idLevels)
    
    o.b<-fit$boot.call
    #old:    start.psi<-extract.psi(fit)
    #old:    est.psi<-start.psi["G0"]
    #old:    call.b<-update(object=fit, obj=o.b, data=newD, psi=est.psi, display=FALSE, evaluate=FALSE)
    call.b<-update(object=fit, obj=o.b, data=newD, it.max=it.max.b,
                   start=list(kappa0=startKappa0,kappa=startingKappa), display=FALSE, evaluate=FALSE)
    
    call.b$random <- fit$randomCALL
    
    o.ok<-update.lme.call(o.b, fixed.=paste(nomeRispo,"~."), evaluate=FALSE)
    #o.ok<-update.lme.call(o.b, fixed.=y~., evaluate=FALSE)
    #mycall$data=quote(gh)
    #o.ok<-update.lme.call(o.b, fixed.=y~.,evaluate=FALSE)
    #old:    call.ok<-update(object=fit, obj=o.ok, data=newData, psi=est.psi.b, display=FALSE, evaluate=FALSE)
    #o.ok$fixed<- update.formula(o.ok$fixed, paste(nomeRispo,"~."))
    
    call.ok<-update(object=fit, obj=o.ok, data=newData, it.max=it.max,
                    start=list(kappa0=startKappa0.b, kappa=startingKappa.b), display=FALSE, evaluate=FALSE)
    
    
    #call.ok$n.boot <- call.b$n.boot<-0
    call.ok$control <- call.b$control<-quote(seg.control(display=FALSE, n.boot=0))
    all.L<-all.psi<-NULL
    it<-0
    L0<-L.orig<-logLik(fit$lme.fit.noG)# logL(fit, metodo=metodo)
    if(display){
      flush.console()
      cat("original data:", 0, "  logLik =", formatC(as.numeric(L.orig), 3, format = "f"),"   psi parms:", formatC(extract.psi(fit),4,format="f"),"\n")
    }
    if(is.null(start)){
      startingKappa<-extract.psi(fit)
      startKappa0<- startingKappa[1]
      startingKappa<-startingKappa[-1]
      nomiKappa<-names(startingKappa)
      nomiKappa<-sapply(strsplit(nomiKappa, "G\\."),function(x)x[2])
      names(startingKappa) <- nomiKappa
    } else {
      nomiG<-sapply(strsplit(fit$namesGZ$nomiG, "G\\."),function(x)x[2])
      if(length(intersect(names(start), c("G0", nomiG)))!=length(start)) stop("'start' should include all the changepoint parameters")
      startKappa0<-start["G0"]
      startingKappa<-start[-which("G0"%in%names(start))]
      nomiKappa<-names(startingKappa)
    }
    #if(is.null(seed)) seed<-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
    if(is.null(seed)){
      mY <- mean(newData[,nomeRispo])
      sepDec<-if(options()$OutDec==".") "\\." else "\\,"
      vv <- strsplit(paste(strsplit(paste(mY), sepDec)[[1]], collapse=""),"")[[1]]
      vv<-vv[vv!="0"]
      vv=na.omit(vv[1:5])
      seed <-eval(parse(text=paste(vv, collapse="")))
      set.seed(seed)
    } else {
      if(is.na(seed)) {
        seed <-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
        set.seed(seed)
      } else {
        if(!is.numeric(seed)) stop(" 'seed' is not numeric") else set.seed(seed)
      }
    }  
    

    #browser()
    n.boot.rev<- 3
    alpha1<-alpha[1]
    for(i in seq(B)){
      diff.selected.ss <- rev(diff(na.omit(all.L)))
      if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){
        #qpsi<-sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i]))
        qpsi<- mean(startKappa0>Z)
        qpsi<-ifelse(abs(qpsi-.5)<.1, alpha1, qpsi)
        alpha1<-1-alpha1
        #est.psi0<-sapply(1:ncol(Z),function(i)quantile(Z[,i],probs=1-qpsi[i],names=FALSE))
        startKappa0 <- quantile(Z, probs=1-qpsi, names=FALSE)
      }
      
      #build the boot sample
      #idx<-sample(N, replace=TRUE)
      #idx<-sample(1:N, size=trunc(N*frac), replace=TRUE)
      idx<-sample(idLevels, size=trunc(N*frac), replace=TRUE)
      
      newD <- do.call("rbind",lapply(idx, function(x)newData[newData[,nome.id]==x,]))
      newD$y.b<- newD[,nomeRispo]
      
      #       r<-list(newD=newD, call.b=call.b)
      #       return(r)
      
      #-->>       CAMBIA STARTING VALUE in call.b
      if(startKappa0>=rangeZ[2] | startKappa0<=rangeZ[1] ) startKappa0<- jitter(startKappa00,factor=5) #sum(rangeZ)/2
      
      fit.b<-try(suppressWarnings(eval(call.b)), silent=TRUE) #envir=newD) 
      if(!is.list(fit.b)){
        #        fit.b<-NULL
        it.b<-0
        while(!is.list(fit.b)){
          idx<-sample(idLevels, size=trunc(N*frac), replace=TRUE)
          newD <- do.call("rbind",lapply(idx, function(x)newData[newData[,nome.id]==x,]))
          newD$y.b<- newD[,nomeRispo]
          startKappa0<- jitter(startKappa00,factor=5)
          fit.b<-try(suppressWarnings(eval(call.b)), silent=TRUE) #envir=newD)
          it.b<-it.b+1
          if(it.b>=10) break
        }
      }
      if(is.list(fit.b)){
        #old: start.psi.b<-extract.psi(fit.b)
        #old: est.psi.b<-start.psi.b["G0"]
        startingKappa.b<-extract.psi(fit.b)
        startKappa0.b<- startingKappa.b[1]
        startingKappa.b<-startingKappa.b[-1]
        #NB "nomiKappa" dovrebbero essere sempre gli stessi
        names(startingKappa.b) <- nomiKappa
        fit.ok<-try(suppressWarnings(eval(call.ok)), silent=TRUE) # data=newData)
        #L1<-if(is.list(fit.ok)) logL(fit.ok, metodo=metodo) else (-Inf)
        #22/05/18 aggiunto un altro tentativo... ho notato che l'insuccesso pu? dipendere dagli starting value..
        if(!is.list(fit.ok)){
          call.ok$start<-NULL
          fit.ok<-try(suppressWarnings(eval(call.ok)), silent=TRUE)
        }
        L1<-if(is.list(fit.ok)) as.numeric(logLik(fit.ok)) else (-Inf)
      } else {
        stop("the bootstrap fit is unsuccessful")
      }
      if(L0<L1) {
        fit<-fit.ok
        L0<-L1
      }
      all.psi[length(all.psi)+1]<-est.psi<-extract.psi(fit)["G0"]
      all.L[length(all.L)+1]<-L.ok<-max(L0,L1)
      it<-it+1
      if(display){
        flush.console()
        ll<-if(it<10) "  logLik =" else " logLik ="
        cat("boot resample:", it, ll, formatC(L.ok, 3, format = "f"),"   psi parms:", formatC(extract.psi(fit),4,format="f"),"\n")
      }
      startingKappa<-extract.psi(fit)
      startKappa0<- startingKappa[1]
      startingKappa<-startingKappa[-1]
      nomiKappa<-names(startingKappa)
      nomiKappa<-sapply(strsplit(nomiKappa, "G\\."),function(x)x[2])
      names(startingKappa) <- nomiKappa
      
      #conta i valori ss uguali per fermarsi prima..
       asss<-na.omit(all.L)
       if(length(asss)>break.boot){
         if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break
       }
      
    } #end boot replicates
    #============================================================================================
    fit$history.boot.restart<-cbind(b=1:length(all.psi),psi=all.psi, logL=all.L)
    fit$seed<-seed
    #r<-list(seg.lme.fit=fit, history=cbind(b=1:length(all.psi),psi=all.psi, logL=all.L) )
    if(msg) cat(" New solution(s) found:", length(unique(all.psi)), "\n")
    fit
  }
  #------------------
  fn.re<-function(obj){
    #restituisce un array n x n.ranef x terms
    #   n e' il n. totale delle misurazioni..
    #   n.ranef e' il n. dei random effects (tipicamente e' 1, >1 con nested..)
    #   terms e' il n. dei termini coinvolti nei random effects (ad es., intercept, x ..)
    ro<-ranef(obj)
    n.levels<- ncol(obj$groups) #n. dei livelli casuali (ad es., se nested..)
    if(n.levels<=1) {
      ro<-list(ro)
      names(ro)<-names(obj$groups)
    }
    nomi.levels<-names(obj$groups) #nomi degli effetti casuali names(ranef(obj))
    n.terms<-sapply(ro, ncol)
    nomiTermini<- unique(as.vector(unlist(sapply(ro, colnames))))
    tutti<-array(0, c(nrow(obj$groups), ncol(obj$groups), max(n.terms)), dimnames=list(NULL, names(obj$groups), nomiTermini))
    for(nome in nomiTermini){
      for(j in nomi.levels){
        if(nome %in% names(ro[[j]])){
          for(i in unique(obj$groups[,j])) tutti[obj$groups[,j]==i,j,nome] <- ro[[j]][rownames(ro[[j]])==i, nome]
        }
      }
    }
    tutti
  }
  #------------------
  update.lme.call<-function (old.call, fixed., ..., evaluate=FALSE) {
    call <- old.call
    extras <- match.call(expand.dots = FALSE)$...
    if (!missing(fixed.)) call$fixed <- update.formula(call$fixed, fixed.)
    if (length(extras) > 0) {
      existing <- !is.na(match(names(extras), names(call)))
      for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
      if (any(!existing)) {
        call <- c(as.list(call), extras[!existing])
        call <- as.call(call)
      }
    }
    if (evaluate) eval(call, parent.frame()) else call
  }
  #---------------------------------------------------------------------------
  f.pd<-function(obj){
    #dato un modello lme 'obj' restituisce una matrice pdMat che deve essere utilizzata come componente random
    #   nelle call "call.ok$random<-list(id=pd)"
    pdClasse<-class(obj$modelStruct$reStruct[[1]])[1]
    if(pdClasse=="pdBlocked"){ #assumiamo solo 2 blocchi..(? un LIMITE, ma ? facile generalizzare..)
      start.v<-unlist(lapply(obj$modelStruct$reStruct[[1]], function(z){as.numeric(z)}))
      cl1<-class(obj$modelStruct$reStruct[[1]][[1]])[1]
      cl2<-class(obj$modelStruct$reStruct[[1]][[2]])[1]
      fo1<-attr(obj$modelStruct$reStruct[[1]][[1]],"formula")
      fo2<-attr(obj$modelStruct$reStruct[[1]][[2]],"formula")
      no1<-attr(obj$modelStruct$reStruct[[1]][[1]],"Dimnames")[[1]]
      no2<-attr(obj$modelStruct$reStruct[[1]][[2]],"Dimnames")[[1]]
      pd<-pdBlocked(start.v, pdClass = c(cl1,cl2), nam = list(no1, no2), form=list(fo1, fo2))
    } else {
      fo<-attr(obj$modelStruct$reStruct[[1]],"formula")
      pd <- pdMat(as.numeric(obj$modelStruct$reStruct[[1]]), form = fo, pdClass = pdClasse)
    }
    pd}
  #---------------------------------------------------------------------------
  ###
  #browser()
  h <- control$h 
  if(!(is.call(obj) || class(obj)[1]=="lme")) stop(" 'obj' should be a lme fit or a lme call")
  if(missing(psi) && it.max==0) stop("Please supply 'psi' with 'it.max=0'")
  
  if(is.call(obj)) {
    my.call  <- obj
    datacall <- deparse(obj$data)
    if(is.null(random)) random<-eval(obj$random)      
  } else {
    my.call <- obj$call
    datacall<- deparse(obj$call$data)
    if(is.null(random)) random<-eval(obj$call$random)  
  }
  #my.call<-if(is.call(obj)) obj else obj$call
  #datacall<- if(is.call(obj)) deparse(obj$data) else deparse(obj$call$data)
  #if(is.null(random)) {random<- if(is.call(obj)) eval(obj$random) else eval(obj$call$random) }
  randomCALL<-random
  G0random<- sapply(random, function(.x) "G0" %in% all.vars(attr(.x, "formula")))
  if(it.max==0 && !any(G0random)) stop("'G0' in the random part is meaningless with 'it.max=0'")
  #    name.group<-nameRandom<-names(random)
  
  #    if(is.null(random)) {
  #      # A CHE SERVE????????????????
  #      random=list(
  #          id=pdMat(as.numeric(obj$modelStruct$reStruct[[1]]),
  #          form=attr(obj$modelStruct[[1]][[1]],"formula"),
  #          pdClass=class(obj$modelStruct$reStruct[[1]])[1]))
  
  #     randomCALL<- if(is.call(obj)) obj$random else obj$call$random
  #     } else {
  #	      randomCALL<- random
  #    }
  
  if (!is.null(random)) {
    if (is.list(random)) {
      nameRandom <- names(random) #nomi dei fattori id
      if(is.null(nameRandom)) stop("random argument must be a *named* list.")
      else if(sum(nameRandom == "")) stop("all elements of random list must be named")
    } else stop("random effects should be specified as named lists")
    random.vars <- c(unlist(lapply(random, function(x) all.vars(formula(x)))), nameRandom)
    names(random.vars)<-NULL #per evitare casini.. spesso i nomi erano le variabili stesse..
  } else random.vars <- NULL
  
  J<-length(random)
  
  #if(missing(Z) && missing(seg.Z)) stop(" 'Z' or 'seg.Z' should be provided")
  #name.Z<-if(missing(seg.Z)) deparse(substitute(Z)) else all.vars(seg.Z)
  
  if(missing(seg.Z)) stop(" 'seg.Z' should be provided")
  name.Z<- all.vars(seg.Z)
  if(length(name.Z)>1) stop("segmented.lme works with 1 breakpoint only")
  
  allNOMI<-unique(c(name.Z, all.vars(my.call$fixed), random.vars, all.vars(z.psi), all.vars(x.diff)))
  formTUTTI<-as.formula(paste("~.+", paste(allNOMI,collapse="+")))
  formTUTTI<-update.formula(my.call$fixed, as.formula(paste("~.+", paste(allNOMI,collapse="+"))))
  #U and G0 have not yet been defined
  formTUTTI<-update.formula(formTUTTI, .~.-U-G0)
  
  anyFixedG<-FALSE
  if(!is.null(fixed.parms)){
    name.fixed.butG0<-setdiff(names(fixed.parms),"G0") #nomi dei termini fissi escluso G0
    anyFixedG<-if(length(name.fixed.butG0)>=1) TRUE else FALSE #ci sono fixed coef nel submodel of psi?
    if(anyFixedG){
      formTUTTI<-update.formula(formTUTTI, as.formula(paste("~.+", paste(name.fixed.butG0,collapse="+"))))
    }
  }
  
  
  if(is.null(my.call$data)) stop("`obj' should include the argument `data'")
  if(missing(data)) {
    mf<-model.frame(formTUTTI, data=eval(my.call$data), na.action=na.omit)
  } else {
    mf<-model.frame(formTUTTI, data=data, na.action=na.omit)
  }
  
  
  
  #    if (length(allvars)) {
  #        mf$formula <- as.formula(paste(paste(deparse(gp$fake.formula, 
  #            backtick = TRUE), collapse = ""), "+", paste(allvars, 
  #            collapse = "+")))
  #        mf <- eval(mf, parent.frame())
  #    }
  
  #adesso si deve ordinare il dataframe..
  mf<-mf[order(mf[[nameRandom[J]]]),] 
  
  nomeRispo<-names(mf)[1]
  Rispo<-model.response(mf)
  #
  
  #browser()
  
  
  Z <- mf[[name.Z]]
  
  #limZ <- apply(Z, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))

  limZ <- as.matrix(quantile(Z, names = FALSE, probs = c(alpha[1], alpha[2])))
  
  min.Z<- min(limZ[,1])
  max.Z<- max(limZ[,1])
  
  
  
  
  
  
  
  #browser()
  
  if(!missing(psi)) {
    if(length(psi)>1) stop("segmented.lme works with 1 breakpoint only")
    if(psi<=min(limZ) || psi>=max(limZ)) stop("the provided psi is outside the range, see 'alpha' in seg.control()", call.=FALSE)
    }
  
  id <- mf[[nameRandom[J]]] #the innermost factor
  if(is.factor(id)) id <-factor(id, levels = unique(id)) 
  
  ni<- tapply(id, id, length) #vector of cluster sizes
  N<-length(ni)#n. of clusters (subjects)
  n<-length(id) #n. of total measurements
  
  id.x.diff<- FALSE
  id.z.psi <- FALSE
  #M.z.psi <- mf[all.vars(z.psi)] #
  #M.x.diff <- mf[all.vars(x.diff)] #
  
  M.z.psi <- model.matrix(z.psi, data = mf)
  if("(Intercept)"%in%colnames(M.z.psi)) M.z.psi<-M.z.psi[,-match("(Intercept)", colnames(M.z.psi)),drop=FALSE]
  M.x.diff <- model.matrix(x.diff, data = mf)
  if("(Intercept)"%in%colnames(M.x.diff)) M.x.diff<-M.x.diff[,-match("(Intercept)", colnames(M.x.diff)),drop=FALSE]
  
  fixed<-"U+G0" #fixed<-"U"
  nomiG<-NULL #se non ci sono explicative nel changepoint (se ci sono poi viene sovrascritto)
  namesGZ<-list(nameZ=name.Z)
  
  Offs.kappa<-0
  if(NCOL(M.z.psi)>0){
    id.z.psi <- TRUE
    Z.psi  <- data.matrix(M.z.psi)
    if(anyFixedG){
      if(!all(name.fixed.butG0 %in% colnames(M.z.psi))) stop("variable(s) in 'fixed.parms' should be included in 'z.psi'")
      Offs.kappa<-Fixed.z.psi<-drop(Z.psi[, name.fixed.butG0, drop=FALSE]%*% fixed.parms[name.fixed.butG0])
      Z.psi<-Z.psi[,setdiff(colnames(Z.psi), name.fixed.butG0), drop=FALSE]
    }
  if(ncol(Z.psi)>0){
      nomiG<-paste("G.",colnames(Z.psi),sep="") 
      namesGZ$nomiG<-nomiG
      fixed<-paste(fixed,paste(nomiG,collapse="+"),sep="+")
    } else {
      id.z.psi <- FALSE
    }
  } else { #se NCOL(M.z.psi)<=0
    if(anyFixedG) stop("variable(s) in 'fixed.parms' should be included in 'z.psi' ")
  }
  if(NCOL(M.x.diff)>0) {
    X.diff <- data.matrix(M.x.diff) 
    id.x.diff <- TRUE
    nomiUx<-paste("U.",colnames(M.x.diff),sep="")
    namesGZ$nomiUx<-nomiUx
    fixed<-paste(fixed,paste(nomiUx,collapse="+"),sep="+")
  }
  
  #==================================================================
  #Queste funzioni min1() e max1() restituiscono il "quasi" min o max
  # if(nq>0){
  #   min1<-function(x,na.rm=FALSE){x<-sort(x)[-(1:nq)];min(x,na.rm=na.rm)}
  #   max1<-function(x,na.rm=FALSE){x<-rev(x)[-(1:nq)];max(x,na.rm=na.rm)}
  # } else {
  #   min1<-min
  #   max1<-max
  # }
  # adjust<-max(min(adjust,2),0)  #solo 0,1,2 sono consentiti..
  # 
  # #==================================================================
  # 
  # min.Z<-min1(Z)
  # max.Z<-max1(Z)
  
  
  mf["U"]<- 1 #rep(1, n)
  #if(!is.null(obj$data)) my.dd<-cbind(obj$data,my.dd)
  #browser()
  #Qua ci possono essere 2 variabili di effetti casuali. Attenzione all'ordine.. il secondo!
  #if(name.group!="id") mf['id']<-mf[name.group] #costruisci un'altra variabile di clustering con il nome id
  #correzione per nested r.e: poich? id ? quello "giusto" (costruito prima), allora
  #
  mf['id']<-id #E' necessario costruire una nuova id con nome esattamente 'id'??!??!
  mf[name.Z]<- Z
  
  est.kappa0<-TRUE
  if("G0" %in% names(fixed.parms)) {
    est.kappa0<-FALSE
    kappa0<-kappa0Fixed<-fixed.parms["G0"]
  }

  if(est.kappa0){
    if(!is.null(start$kappa0)) {
      psi<-if(psi.link=="logit") inv.logit(start$kappa0,min.Z,max.Z) else start$kappa0
    }
    
    if(missing(psi)){
      #        formulaFix.Poly<-update.formula(my.call$fixed, paste("~.+",name.Z,"+",paste("I(",name.Z,"^2)",sep="")))
      #        obj2<-update.lme.call(my.call, fixed = formulaFix.Poly, data=mf, evaluate=TRUE)
      #        psi<- -fixed.effects(obj2)[name.Z]/(2*fixed.effects(obj2)[paste("I(",name.Z,"^2)",sep="")])
      psi<-tapply(Z, id, function(.x) sum(range(.x))/2)   
      if(any(psi <= min(Z))||any(psi>=max(Z))) stop("psi estimated by midvalues is outside the range") #the quadratic fit 
    }
  } else { #se e' fissato e quindi non devi stimarlo
    psi<- kappa0
  }
  
  
  #browser()
  
  
  psi.new <- psi #stime iniziali
  if(length(psi)!=1 && length(psi)!=N) stop("length(psi) has to be equal to 1 or n. of clusters")
  if(length(psi) == 1) {
    psi.new <- rep(psi.new, N) #subj-specific changepoints
  }
  psi.ex<-rep(psi.new, ni ) #length = N (n. tot obs)
  
  #----------------------------------------
  mf$U<- (Z-psi.ex)*(Z>psi.ex) #pmax(0, Z-psi.ex)
  formulaFix.noG<-update.formula(my.call$fixed, paste("~.+","U"))
  if(id.x.diff){
    Ux<- as.matrix(mf$U*X.diff)
    colnames(Ux)<-nomiUx
    mf<-cbind(mf,Ux) #$Ux<- my.dd$U*X.diff
    formulaFix.noG<-update.formula(my.call$fixed, paste(".~.+U+",paste(nomiUx,collapse="+"),sep=""))
  }
  #se vuoi assumere i psi fissi (it.max=0)
  if(it.max==0) {
    #aggiorna i random effects. Attenzione in tal caso random deve essere "U" ( o "1").
    #Se fosse "U+G0" darebbe errore perch? G0 non esiste
    #Oppure dovresti modificare la formula di random,
    #attr(random[[1]], "formula")<-update.formula(attr(random[[1]], "formula"), ~.-G0)
    formulaRand<-formulaRandOrig<-my.call$random
    call.ok<-update.lme.call(my.call, fixed = formulaFix.noG, random=random, data=mf, evaluate=FALSE)
    o<-eval(call.ok)
    return(o)
  } #end if(it.max=0)
  #---------------------------------------------------------------------------
  #should we fit a preliminary model? extract starting values
  start.delta0<-start$delta0
  if(id.x.diff) start.delta<-start$delta
  need.prelim<- (is.null(start.delta0) || (id.x.diff && is.null(start.delta)))
  
  if(need.prelim){
    random.noG <- random
    for(j in 1:J) attr(random.noG[[j]],"formula")<-update.formula(formula(random[[j]]), ~.-G0)
    o<-update.lme.call(my.call, fixed=formulaFix.noG, random=random.noG, data=mf, evaluate=TRUE)
    #o<-update.lme.call(my.call, fixed=formulaFix.noG, data=mf, evaluate=TRUE)
    delta0i<-unlist(coef(o)["U"]) #length= N
    if(id.x.diff) delta<-fixed.effects(o)[nomiUx] #length= n.1
  } else {
    delta0i<-if(length(start.delta0)==N) start.delta0 else rep(start.delta0,N)
    if(id.x.diff) delta<-start.delta[nomiUx]
  }
  
  start.kappa<-start$kappa
  
  eta.psi<-0
  
  if(id.z.psi) {
    if(is.null(start.kappa)) {
      kappa<- rep(0, ncol(Z.psi))
      names(kappa)<-nomiG
      eta.psi<-rep(0,nrow(Z.psi))
    } else {
      kappa<-start.kappa
      names(kappa)<-paste("G.",names(kappa),sep="")
      if((length(kappa)!=NCOL(M.z.psi)) || any(is.na(match(names(kappa), nomiG)))) stop("error in the names/length of start.kappa")
      eta.psi <- drop(Z.psi%*%kappa)
    }
  }
  #################################
  if(anyFixedG) eta.psi<- eta.psi + Offs.kappa
  #Offs.kappa<-data.matrix(mf[name.fixed.butG0])%*%fixed.parms[name.fixed.butG0]
  
  #-----------------------------------------------------------
  formulaFix<-update.formula(my.call$fixed, paste(".~.+",fixed))
  
  if(!est.kappa0) formulaFix<-update.formula(formulaFix, .~.-G0)
  formulaRand<-formulaRandOrig<-my.call$random
  minMax <- cbind(tapply(Z,id,min),tapply(Z,id,max)) #matrice nx2 dei min-max
  #---------------------------------------------------------
  call.ok<-update.lme.call(my.call, fixed = formulaFix, random=random, data=mf, evaluate=FALSE,
                           control = list(msVerbose = FALSE, niterEM = 100, opt = "optim"))
  if(!is.null(start.pd)) call.ok$random<-quote(list(id=start.pd))
  #--------------------------------------------------------
  kappa0i  <- if(psi.link=="logit") logit(psi.ex,min.Z,max.Z)  else psi.ex #length=n
  if(est.kappa0) kappa0<-mean(kappa0i)
  ki<- kappa0i - kappa0
  etai<- kappa0i + eta.psi
  psi.ex<-if(psi.link=="logit") inv.logit(etai,min.Z,max.Z) else etai  #length=n
  
  #----------------------------------------------------------
  boot.call<-update.lme.call(my.call, y.b~., data=newData, evaluate=FALSE) #salva la call before modifying obj
  it <- 1
  epsilon <- 9
  obj<-o #serve per estrarre la logLik
  b.new<-rep(.1,length(all.vars(formulaFix))) #la risposta conteggiata in all.vars(formulaFix) conta per l'intercetta
  while(abs(epsilon) > tol){
    #if(it==9) browser()
    DD<-if(psi.link=="logit") (max.Z-min.Z)*exp(etai)/((1+exp(etai))^2) else rep(1,n)
    V<-ifelse(Z >psi.ex, -1, 0)
    VD <- V*DD
    mf$U <- pmax(0, Z-psi.ex)
    mf$G0<- rep(delta0i,ni)*VD #rowSums(rep(delta0i,ni)*VD)
    if(id.x.diff){
      Ux<- as.matrix(mf$U*X.diff)
      colnames(Ux)<-nomiUx
      mf[,which(names(mf)%in%nomiUx)]<-Ux
      deltaMatrix<-cbind(rep(delta0i,ni), matrix(delta,nrow=length(V),ncol=length(delta),byrow=TRUE))
      deltaVDx<-deltaMatrix*VD*cbind(1,M.x.diff)
      mf$G0<-rowSums(deltaVDx)
    }
    if(id.z.psi){
      G<-cbind(mf$G0,mf$G0*M.z.psi)
      colnames(G)<-c("G0",nomiG)
      mf[,colnames(G)]<-G
    }
    dev.old <- obj$logLik
    #costruisci l'offset e modifica la risposta..
    Off<- if(est.kappa0)  -kappa0i*mf$G0 else -ki*mf$G0
    if(id.z.psi) Off<- Off - drop(as.matrix(mf[nomiG])%*%kappa[nomiG])
    mf[nomeRispo]<-Rispo-Off
    
    # estimate the model
    ########################################
    obj<-eval(call.ok)
    ########################################
    
    #formulaFix.noG
    #random.noG
    
    b.old<-b.new
    b.new<-fixed.effects(obj)
    ###    if(psi.new>max(Z)| psi.new<min(Z)) stop("estimated psi out of range: try another starting value!")
    dev.new <- obj$logLik#sum((fitted(obj)-my.dd[,paste(formula(obj))[2]])^2) #
    
    
    #===============================================================================
    if (display) {
      flush.console()
      spp <- if (it < 10) " " else NULL
      cat(paste("iter = ", spp, it,
                "  work.LL = ",formatC(dev.new,digits=3,format="f"), #era format="fg"
                "  diff.s = ",formatC(fixef(obj)["U"],digits=3,format="f"), 
                "  kappa0 = ",paste(formatC(fixef(obj)["G0"],digits=3, format="f"), collapse="  "),
                sep=""), "\n")
    }
    
    
    
    #===============================================================================
    epsilon <- abs((dev.new-dev.old)/(dev.old+.1))
    #epsilon <- max(abs((b.new-b.old)/b.old))
    #26/7/16 PERCHE' HO MESSO QUI i CRITERI DI ARRESTO? E' un problema perch? poi il ciclo non
    # termina e i "delta", "kappa0", rimangono quelli dell'iterazione precedente..
    #if(it >= it.max) break
    #if(abs(epsilon) <= tol) break
    it <- it+1
    #stopping rules not met: update the estimates
    ##-------------------------------
    continua<-  (abs(epsilon) > tol && it< it.max)
    #delta0i<-if(inflate.res) inflate.2residuals(obj, coeff=TRUE)[,"U"] else unlist(coef(obj)["U"])    #length=N
    if(id.x.diff) delta <- fixed.effects(obj)[nomiUx]
    
    delta0i <- unlist(coef(obj)["U"])
    kappa0.old <- kappa0 #length=1
    kappa0 <- fixed.effects(obj)["G0"]
    
    if(est.kappa0 && continua){
      kappa0<- if(psi.link=="identity")  adj.psi(kappa0, limZ) else max(min(9,kappa0),-9)
      kappa0 <- kappa0.old + (kappa0 - kappa0.old)*h/2 
      #questo controllo e' sbagliato se link.psi="logit"
      #if(kappa0<= min(Z) || kappa0>=max(Z)) stop("estimated psi outside the range")
    }
    
    
    
    #browser()
    
    kappa0i.old<-kappa0i #length=n
    
    #browser()
    RE<-fn.re(obj) # array n x n.randmEff (2 se sono nested..) x n.termini (U, G0,..) 
    ki<-if("G0" %in% dimnames(RE)[[3]]) rowSums(RE[ , ,"G0", drop=FALSE]) else rep(0,n)
    #NB    RE[ , ,"G0"]  ? una matrice di n.obs righe e che ha in ogni colonna i breakpoint relativi ad ogni livello di nesting.. 
    #      RE[ , J,"G0"] e' l'innermost J=ncol(RE[ , ,"G0"])
    #Quindi i ki sono la somma di tutti i termini random (anche a diversi livelli di nested)
    kappa0i <- kappa0+ki
    
    ########I codici sotto non funzionano con nested r.e.        
    #        ki<-if("G0"%in%names(ranef(obj))) unlist(ranef(obj)["G0"]) else rep(0,N)
    #        kappa0i <- kappa0+ki #length=N
    #        #kappa0i <-if(inflate.res) inflate.2residuals(obj, coeff=TRUE)[,"G0"] else unlist(coef(obj)["G0"]) #length=N
    #        kappa0i<-rep(kappa0i,ni) #+ kappa0i.old #length=n
    #        ki<-rep(ki,ni)
    ###########################
    
    etai<-kappa0i
    if(id.z.psi) {
      kappa.old<-kappa #length=1
      kappa<-fixed.effects(obj)[nomiG]  #esclude G0..
      etai<-etai+drop(Z.psi%*%kappa)
    }
    #questo e' se ci sono parametri con valori *fissati* da non stimare..
    if(anyFixedG){ 
      etai <- etai+ Offs.kappa
    }
    
    #browser()
    
    psi.old <- psi.ex #length=n.obs
    psi.ex<-if(psi.link=="logit") inv.logit(etai,min.Z,max.Z) else etai  #length=n
    #eventuale aggiustamento dei psi.
    #        if(adjust==2){
    #            id.bp<-I(psi.new>minMax[,1]&psi.new<minMax[,2])
    #            psi.new[!id.bp] <- tapply(Z,id,max)[!id.bp]# minMax[!id.bp,2]
    #            }
    
    #if(it==2) browser()
    
    if(it >= (it.max+1)) break
    #        if(abs(epsilon) <= tol) break #NON serve, c'? il while(abs(epsilon) > tol)
    
    #f.pd() la chiamo solo se non ci sono nested r.e. (perch? in quel caso non funziona..) 
    if(J<=1){ #se c'e' SOLO 1 r.e. 
      pd<-f.pd(obj)
      call.ok$random<-quote(list(id=pd))
    }
  } #end_while
  #---------------------------------------------------------------------------------------
  #Adesso devi fare in modo che le linee *veramente si uniscano (no salti), boot restarting e
  #valore di logLik ed infine aggiorna obj<-eval(call.ok)
  
  fixed.noG<-if(is.null(nomiG)) update.formula(call.ok$fixed, paste(".~.-G0",sep="")) 
  else update.formula(call.ok$fixed, paste(".~.-G0-",paste(nomiG, collapse="-"),sep=""))
  if(is.null(random.noG)){ #se "random.noG" non ? stato specificato in segmented.lme()
    random.noG<-random
    #Escludi G0 dalla formula random..
    #  -
    #18/6/16: mi sono reso conto che random pu? essere una lista che contiene diverse formula che includono "G0" (ad es., nel caso di r.e.), quindi "G0" si deve
    # eliminare in ogni formula..
    # Just now I don't know what happen if random is a block matrix.. VERIFICARE.. comunque il codice sotto c'e'..
    
    for(j in 1:J){ #J =n. di random cluster (a des., children %in% school,..)
      #questo sotto ? se random ? una lista e ogni sua componente ha una formula come "attributo".. Dovrebbero rientrare i casi di
      #semplici e nested r.e. NON con una matrice a blocchi..
      if(!is.null(attr(random.noG[[j]], "formula"))){ #semplici e nested r.e.
        if("G0"%in%all.vars(attr(random.noG[[j]], "formula"))){#se la formula della componente j contiene "G0"..
          attr(random.noG[[j]], "formula") <- update.formula(attr(random.noG[[j]], "formula"), ~.-G0)
        }
        #questo sotto e' se c'e' una matrice a blocchi..
      } else {
        #questo sotto e' se c'e' una matrice a blocchi..
        for(k in length(random.noG[[j]])) {
          if(!is.null(attr(random.noG[[j]][[k]], "formula"))){ #Questo ? se ci sono matrici a blocchi quando 
            if("G0"%in%all.vars(attr(random.noG[[j]][[k]], "formula"))){#se la formula della componente j contiene "G0"..
              attr(random.noG[[j]][[k]], "formula") <- update.formula(attr(random.noG[[j]][[k]], "formula"), ~.-G0)
            }
          }
        } #end k=1..K
      }
    } #end j=1..J 
  }
  
  call.ok.noG<-update.lme.call(call.ok, fixed = fixed.noG, random = random.noG)
  mf[nomeRispo]<-Rispo
  obj.noG<-eval(call.ok.noG)
  
  #if(it >= (it.max+1)) warning("max no. of iterations achieved.. refit.boot() suggested", call. = FALSE)
  psi.new<-psi.ex[cumsum(ni)]
  
  #5/7/18: rownames(ranef(obj)[[J]]) sono del tipo "1/1", cio? tengono conto di eventuali nested.. 
  #names(psi.new)<-rownames(ranef(obj)[[J]])
  
  
  #names(psi.new)<-levels(unlist(obj$groups))
  #names(psi.new)<-levels(id)
  ##27/6, nuovo:
  #se id e' numerica levels(id) e' NULL, per cui i psi.new sono senza nomi (e questo da errore in plot.segmented)
  #names(psi.new)<-levels(factor(id)) #funziona anche con nested r.e.??
  #browser()
  rnfGroups<-obj.noG$groups
  
  #names(psi.new)<-levels(rnfGroups[, ncol(rnfGroups)]) #levels ordina per i nomi "nuovi" (se c'? nested 4/10 lo considera prima di 4/9').. 
  names(psi.new)<-rownames(coef(obj.noG)) #oppure unique(rnfGroups[, ncol(rnfGroups)])
  attr(psi.new,which="ni")<-table(rnfGroups[, ncol(rnfGroups)]) 
  
  id.bp<-I(psi.new>=minMax[,1]&psi.new<=minMax[,2])
  attr(psi.new,which="is.break")<-id.bp
  
  #mf$rispo<-Rispo
  #o.new<-lme.formula(rispo ~ x + U + U.x.diff, data = mf, random=list(id=pdDiag(~1+x+U)), method=..)
  #return(o.new)
  
  if(adjust==1){
    #ristima il modello con i nuovi psi ( e le nuove variabili)
    psi.new[!id.bp] <- tapply(Z,id,max)[!id.bp]# minMax[!id.bp,2]
    psi.ex <- rep(psi.new, aa) #length=n.obs
    DD<-fn1(c(rep(kappa0,aa),kappa1), Z.psi ,2, link=psi.link) #length=n.obs
    V<-ifelse(Z >psi.ex, -1, 0)
    my.dd$U<- pmax(0, Z -psi.ex)
    VD <- V*DD
    deltaMatrix<-cbind(rep(betaa,aa), matrix(delta,nrow=length(V),ncol=length(delta),byrow=TRUE))
    deltaVDx<-deltaMatrix*VD*M.x.diff
    G0<-rowSums(deltaVDx)
    G<-G0*M.z.psi
    colnames(G)<-c("G0",paste("G.",colnames(M.z.psi)[-1],collapse="+",sep=""))
    my.dd<-cbind(my.dd, G)
    dev.old <- obj$logLik
    #stima il modello:
    obj<-eval(call.ok)
  }
  
  
  #if(id.z.psi) names(kappa)<- colnames(M.z.psi) #? gi? fatto prima
  RIS <- list("lme.fit"=obj, "lme.fit.noG"=obj.noG, "psi.i"=psi.new, call=match.call())
  if(!is.null(fixed.parms)) RIS$fixed.parms<-fixed.parms
  if(id.z.psi) {
    RIS$fixed.eta.psi<-drop(as.matrix(cbind(1,M.z.psi[cumsum(ni),]))%*%c(kappa0,kappa))
    names(RIS$fixed.eta.psi) <-names(psi.new)
  } else {
    RIS$fixed.eta.psi<-rep(kappa0, length(psi.new))
    names(RIS$fixed.eta.psi) <-names(psi.new)
  }
  if(id.x.diff) {
    RIS$fixed.eta.delta<-drop(as.matrix(cbind(1,M.x.diff[cumsum(ni),]))%*%fixef(obj)[c("U",nomiUx)])
    names(RIS$fixed.eta.delta) <-names(psi.new)
  } else {
    RIS$fixed.eta.delta<- rep(fixef(obj)["U"], length(psi.new))
    names(RIS$fixed.eta.delta) <-names(psi.new)
  }
  
  RIS$fixed.psi<-if(psi.link=="logit") inv.logit(RIS$fixed.eta.psi,min.Z,max.Z) else RIS$fixed.eta.psi
  #browser()
  names(RIS$fixed.psi) <- names(psi.new)
  RIS$call$psi.link<-psi.link #in questo modo il nome e' "completo"..
  RIS$boot.call<-boot.call
  RIS$randomCALL<-randomCALL
  RIS$misc$datacall<- datacall
  #browser()
  #RIS$misc$matrix.psi<- 
  if("G0" %in% dimnames(RE)[[3]]) {
    RIS$misc$matrix.psi<- cbind(fixed=RIS$fixed.psi,drop(RE[cumsum(ni), , "G0", drop = FALSE]))
    colnames(RIS$misc$matrix.psi) <- c("fixed", names(obj$groups))
    rownames(RIS$misc$matrix.psi) <- names(psi.new)#rownames(ranef(obj)[[J]])    
  } else {
    RIS$misc$matrix.psi<- matrix(RIS$fixed.psi, ncol=1) #fixed=RIS$fixed.psi)
    rownames(RIS$misc$matrix.psi) <- names(psi.new)#rownames(ranef(obj)[[J]])    
  }
  
  RIS$namesGZ<-namesGZ
  RIS$Off<-Off
  RIS$rangeZ<- tapply(Z, id, range)
  names(Z)<-id #names(psi.new)
  RIS$Z<-Z
  #browser()
  class(RIS)<- "segmented.lme" #c("segmented.lme","segmented")
  #opz.control<-list(...)
  #if(!is.null(opz.control$n.boot)) n.boot<- opz.control$n.boot
  if(it >= (it.max+1) && n.boot==0) warning("max no. of iterations achieved.. 'n.boot>0' suggested", call. = FALSE)
  if(n.boot>0){
    if(display) cat("Implementing bootstrap restarting..\n")
    RIS <- reboot.slme(RIS, B=n.boot, display=display, break.boot=control$break.boot ,
                       seed=control$seed, msg=display)#, metodo=1, frac=1, it.max=6, it.max.b=5, start=NULL, msg=TRUE)
  }
  RIS
}