1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
selgmented <-function(olm, seg.Z, Kmax=2, type=c("score", "bic", "davies", "aic"), alpha=0.05,
control=seg.control(), refit=FALSE, stop.if=5, return.fit=TRUE, bonferroni=FALSE, #improve.after.G=FALSE,
msg=TRUE, plot.ic=FALSE, th=NULL, G=1, check.dslope=TRUE){ #}, a=1){
#vedere bene il fatto del th!!
#ruolo di alpha??? e se la ricerca si vuole restringere a un intervallo? perndere seg.control()$alpha?
#check.dslope: if TRUE, a check on slope difference parameters is done to spot the "non-significant" ones. Then
# the changepoints corresponding to such slopes are removed from the last fit.
#refit: if TRUE (and return.fit=TRUE), the last (selected) model is re-fitted using the 'control' controlling options (e.g. with n.boot>0)
#stop.if. If type="bic" or "aic", the search of number of break can be stopped when the last 'stop.if' fits provide higher aic/bic value
#th: When the distance between 2 estimated breakpoints is <=th, only one is retained. Default is th = drop(diff(rangeZ)/100)
#mettere l'opzione di gdl=n.changepoint e poi (df*log(n))^alpha dove alpha=1.01 (vedi...)
#sel1() si usa per G>1
#===
if(stop.if<=0) stop("'stop.if' should be an integer (at least 4, probably)")
stop.if<-ceiling(stop.if)
f<-function(x, soglia){
#restituisce l'indice del vettore x t.c. il valore e' il piu' piccolo
#tra quelli che sono minori della soglia
id <- (x<=soglia)
xx <- x[id]
ind <- (1:length(x))[id]
id.ok <- which.min(xx)
ind[id.ok]
}
#===
sel1 <- function(y, x, G, Kmax, type="bic",th=th,refit=FALSE,check.dslope=TRUE,
msg=TRUE, bonferroni=FALSE, olm0, control){ #, a=1
#BIC<-function(obj){
# n <-length(obj$residuals)
# r <- n*log(sum(obj$residuals^2)/n) + (n-obj$df.residual)*(log(n)^a) #- 1
# r
#}
ICname<- if(type=="bic") "BIC" else "AIC"
control1<-control
control1$n.boot = 0
control1$tol <- .001 #
BIC.f<-if(type=="bic") BIC else AIC
#---
drop.close <-function(all.psi, th){
if(length(all.psi)==1) return(all.psi)
all.psi <- c(m1, sort(all.psi[!is.na(all.psi)]), m2)
id<- which(diff(all.psi)<=th)[1]
while(!is.na(id) && length(id)>0){
all.psi <- all.psi[-(id+1)]
id<- which(diff(all.psi)<=th)[1]
}
#all.psi<- all.psi[-c(1, length(all.psi))]
all.psi <- setdiff(all.psi,c(m1, m2))
all.psi
}
#start..
n<-length(y)
K1<-ceiling(Kmax/G)
#browser()
#x<-1:n
#n1<-ceiling(n/G)
#cutvalues <- c(seq(1,n,by=n1),n+1)
cutvalues <- c(min(x), cumsum(rep(sum(range(x))/G, G)))
id<-cut(x, cutvalues, right=FALSE, labels=FALSE)
r<-vector("list",G)
#browser()
for(i in 1:G){
#if(i==4) browser()
yy<-y[id==i]
xx<-x[id==i]
olm<-lm(yy~xx) #, data=d)
.a <- capture.output(r[[i]] <-try(suppressWarnings(selgmented(olm, ~xx, type=type, Kmax=K1,
refit=FALSE, msg=FALSE, G=1, control=control, check.dslope=FALSE)
), silent=TRUE))
if(inherits(r[[i]],"try-error")) r[[i]]<- olm
n.psi<- if(is.null(r[[i]]$psi) || any(is.na(r[[i]]$psi[,"Est."]))) 0 else nrow(r[[i]]$psi)
n.psi<- if(n.psi<10) paste("", n.psi) else paste(n.psi)
if(msg) {
cat("\n##### subset ", paste(i, ": ...",sep=""))
cat(" ",n.psi,"selected breakpoints \n")
}
}
#browser()
all.psi <-unlist(sapply(r, function(.x) .x$psi[,"Est."]))
psi.fromG <- drop.close(all.psi,th)
psi.removed<- setdiff(all.psi, psi.fromG)
psi.removed<- psi.removed[!is.na(psi.removed)]
if(length(psi.removed)>=1 && msg){
cat(paste("\n", length(psi.removed), "breakpoint(s) removed for closeness (see argument 'th')\n"))
}
all.psi <- psi.fromG
olm <- olm0 #lm(y~x)
newpsi <- cutvalues[-c(1, length(cutvalues))]
if(msg){
cat(paste("\n => Assessing the", length(newpsi), "cutoff(s) as breakpoint(s). Computing the", ICname, "values.. \n"))
}
all.psi<-sort(c(all.psi, newpsi)) #tutti i psi
#elimina quelli vicini..
psi.withCut <- all.psi <-drop.close(all.psi,th)
#browser()
######## ORA stima modelli con un numero decrescente di psi...
tvalueU <- psi0 <- all.psi
list.psi <- list.fit<-NULL
#browser()
#se nella riduzione del numero di psi il modello non viene stimato, allora piuttosto che passargli i valori di psi
# da cui ha arbitrariamente eliminato il primo, passagli il numero di psi..
#fit.ok<-TRUE
idbreak<-FALSE
conv <- bicVa <- NULL
#browser()
if(msg) cat(" no. breakpoints: ", length(all.psi))
control2<-control1
control2$n.boot=6
while(length(tvalueU)>=1){
.a <- capture.output(os0 <- try(suppressWarnings(
segmented(olm, ~x, psi=all.psi, control=control2)), silent=TRUE))
if(!inherits(os0, "segmented")) {
.a <- capture.output(os0 <- try(suppressWarnings(
segmented(olm, ~x, npsi=length(all.psi), control=control1)), silent=TRUE))
}
if(inherits(os0, "segmented")) {
conv[length(conv)+1]<- 1
bicVa[length(bicVa)+1] <- BIC.f(os0)
list.fit[[length(list.fit)+1]] <- os0
list.psi[[length(list.psi)+1]]<- os0$psi[,"Est."]
if(length(os0$psi[,"Est."])==1) break
tvalueU<- abs(summary(os0)$coefficients[os0$nameUV$U,3])
idU <- which.min(abs(tvalueU))
#man mano che rimuovi i psi, se il t della diffSlope del psi che stai rimuovendo e' > soglia, fermati!
## allora non continuare a toglierli..
#===>>>NOOOOO!! puo' accadere poi che toglie qualche psi, si ferma perche' tutti i t sono grandi, ma il bic e' piu' basso
#in un modello precedente.. Quindi alla fine il criterio non e' ne bic e neanche tutti i t significativi.
#Allora, coerentemente con il caso di G=1, la "verifica delle slope nonsignif, va fatta sul modello
#selezionato con il BIC!! Quindi commentiamo le righe di sotto (il idbreak si potrebbe pure eliminare)
#e il controllo checkdslope lo facciamo dopo sul modello selezionato dal bic.
#browser()
#if(check.dslope){
# soglia <- if(!bonferroni) qnorm(1-alpha/2) else qnorm(1-alpha/(2* length(os0$nameUV$U)))
# if(abs(tvalueU[idU])>soglia) {idbreak=TRUE; break}
#}
all.psi <- os0$psi[-idU,"Est."]
} else {
conv[length(conv)+1]<- 0
list.psi[[length(list.psi)+1]]<-list.fit[[length(list.fit)+1]] <- NA
tvalueU<-all.psi<-all.psi[-1]
bicVa[length(bicVa)+1] <- if(is.numeric(bicVa[length(bicVa)])) {bicVa[length(bicVa)]+1} else {1e4}
}
if(msg) cat(" ..", length(all.psi))
#browser()
if(length(bicVa)>stop.if && all( na.omit(rev(diff(bicVa))[1:stop.if])>0) && (sum(na.omit(rev(conv)[1:stop.if]))>0)) {idbreak<-TRUE; break}
#na.omit() sta per eliminare gli NA che si creano se diff(bicVa) ha dimensione < stop.if
#la sum(na.omit(rev(conv)[1:stop.if]))>0 indica che il controllo sui valori del bic va fatto solo
#se gli ultimi fit non sono tutti insuccessi.
}
if(msg) cat(" .. 0\n")
bicV <- sapply(list.fit, function(.x) if(inherits(.x, "segmented")) BIC.f(.x) else NA)
if(length(bicV)!=length(bicVa)) stop("Errore inatteso 1")
bicV<- bicVa
#browser()
if(idbreak){
if(msg) cat(paste(" =>", length(psi.withCut)-length(bicVa), "unevaluated model(s) due to", stop.if, "increasing A/BIC value(s)..\n"))
#se si ferma prima, significa che sono stati valutati length(bicV) modelli con numero di psi da
#"length(psi.withCut)" fino a "length(psi.withCut)-length(bicV)+1"
#length(psi.withCut)-length(bicV)+1
r <- r0 <- list.fit[[which.min(bicV)]]
npsi.ok <- (length(psi.withCut):(length(psi.withCut)-length(bicV)+1))[which.min(bicV)]
nameBIC<-paste((length(psi.withCut):(length(psi.withCut)-length(bicV)+1)))
} else {
if(length(bicV)!= length(psi.withCut)) stop("Errore nella dim!!")
list.fit[[length(list.fit)+1]] <- olm
bicV<- c(bicV, BIC.f(olm))
r <- r0 <- list.fit[[which.min(bicV)]]
npsi.ok <- ((length(psi.withCut)):0)[which.min(bicV)]
if(npsi.ok!=length(r$psi[,"Est."])) stop("Unexpected error..")
nameBIC<-paste((length(psi.withCut)):0)
}
names(bicV)<-nameBIC
#DUBBIO: il controllo ed eliminazione dei psi lo facciamo all'interno del "while(length(tvalueU)>1)"?
# ed inoltre al modello selezionato un ultimo fit con boot bisognerebbe darlo...
#browser()
if(inherits(r, "segmented")){
#ALTRO CONTROLLO SULLA VICINANZA DEI psi..
all.psi <- sort(r$psi[,"Est."])
#all.psi <- drop.close(all.psi,th)
#r$psi<-all.psi
#browser()
cont1 <- length(all.psi)>0 && (length(all.psi)!=length(drop.close(all.psi,th)))
while(cont1){
start.psi<-drop.close(all.psi,th)
r0$call$psi<- start.psi
.a <- capture.output(r <- suppressWarnings(try(update(r0))), type="message")
all.psi<- if(inherits(r, "segmented")) r$psi[,"Est."] else start.psi[-1]
cont1<- !(inherits(r, "segmented") && (length(all.psi)==length(drop.close(all.psi,th))))
cont1 <- cont1 && length(all.psi)>0
}
if(inherits(r, "segmented")){
# all.psi<- r$psi[,"Est."]
# soglia <- if(!bonferroni) qnorm(1-alpha/2) else qnorm(1-alpha/(2* length(r$nameUV$U)) )
# rm.id <- which(abs(summary(r)$coefficients[r$nameUV$U, 3]) <= soglia)
# #===============
# if(check.dslope && length(rm.id)>0){
# # se devi controllare le slopeDiff
# # #ALTRO CONTROLLO SULLA SIGNIF DELLE SLOPE-DIFF
# #Non puoi eliminarli tutti assieme, perche' una volta che il piu' piccolo e stato eliminato
#gli altri possono cambiare..
#browser()
rm.after.check <- 0
all.psi<- r$psi[,"Est."]
#browser()
if(check.dslope){
soglia <- if(!bonferroni) qnorm(1-alpha/2) else qnorm(1-alpha/(2* length(r$nameUV$U)))
tU <- abs(summary(r)$coefficients[r$nameUV$U, 3])
rm.id <- f(tU, soglia)
while(length(rm.id)>0){
rm.after.check <- rm.after.check+1
all.psi <- all.psi[-rm.id]
if(length(all.psi)<=0) break
r0$call$psi=quote(all.psi)
.a <- capture.output(r <- suppressWarnings(try(update(r0), silent=TRUE))) #senza boot
if(!inherits(r,"segmented")){ #facciamo un altro tentativo..
#r0$call$psi=all.psi
#control$alpha <- .005
r0$call$control<-control #con boot
.a <- capture.output(r<-suppressWarnings(try(r<-update(r0), silent=TRUE)))
}
if(inherits(r,"segmented")){
tU <- abs(summary(r)$coefficients[r$nameUV$U, 3])
#rm.id <- which.min(tU[tU<=soglia])
rm.id <- f(tU, soglia)
all.psi<-r$psi[,"Est."]
} else {
rm.id<-1
}
}
if(length(all.psi)<=0 || is.null(r$psi) ) {
if(msg) warning("All found psi had a non-significant slope diff and have been removed", call.=TRUE, immediate.=TRUE)
n.psi.ok<-0
r<- olm
} else {
if(msg) cat(paste(" => ", rm.after.check, " breakpoint(s) removed due to 'small' slope difference\n", sep=""))
if(refit){
all.psi<- r$psi[,"Est."]
r$call$psi=quote(all.psi)
r$call$control<- quote(control)
.a <- capture.output(r <- try(suppressWarnings(update(r0))))
n.psi.ok <- if(is.null(r$psi)) 0 else nrow(r$psi)
} else {
all.psi<- r$psi[,"Est."]
n.psi.ok <- nrow(r$psi)
}
}
} else {#end if(check.dslope)
if(refit){
all.psi<- r$psi[,"Est."]
r$call$psi=quote(all.psi)
r$call$control<- quote(control)
.a <- capture.output(r <- try(suppressWarnings(update(r))))
n.psi.ok <- if(is.null(r$psi)) 0 else nrow(r$psi)
} else {
all.psi<- r$psi[,"Est."]
n.psi.ok <- nrow(r$psi)
}
}
} else {
#stop("Errore inatteso 1")
r<-olm
n.psi.ok<-0
}
} else {
#stop("Errore inatteso 2")
r<-olm
n.psi.ok<-0
}
if(msg) cat("\n####### Overall: ... ", n.psi.ok, "selected breakpoint(s) \n\n")
#cat(" ##### Overall ", nrow(r$psi),"selected breakpoints \n")
#if(!is.list(r)) r<- olm
bic.values=rbind(as.numeric(names(bicV)), bicV)
rownames(bic.values)<-c("no. breakpoints", ICname)
r$selection.psi <-list(bic.values=bic.values, npsi=n.psi.ok, cutvalues=cutvalues) ##cutvalues #including the extremes
if(refit) r$selection.psi$psi.before.refit <-all.psi
if(plot.ic) plot(t(bic.values), type="o"); points(n.psi.ok, min(bic.values[2,]), pch=19, cex=1.1)
r
#r<-segmented(olm, ~x, psi=r$psi[,"Est."], control=seg.control(n.boot=10,alpha=.01)) #fix.npsi=FALSE
#r
} #fine sel1()
#=====================================================================
# BIC<-function(obj, a=1){
# #Se a=1 questo e' il BIC classico (a meno di una costante)
# n <-length(obj$residuals)
# r <- n*log(sum(obj$residuals^2)/n) + (n-obj$df.residual)*(log(n)^a) #- 1
# r
# }
#=====================================================================
type<-match.arg(type)
if(!type%in%c("bic","aic") && Kmax!=2) stop("Kmax>2 is not (yet?) allowed with hypothesis testing procedures. Set type='bic' or 'aic'", call.=FALSE)
if(!type%in%c("bic","aic") && G>1) stop("G>1 is allowed only with type='bic' or 'aic' ", call.=FALSE)
#=====================================================================
if(is.numeric(olm)){
y<-olm
if(missing(seg.Z)){
Z<-x<- 1:length(y)
} else {
nomeX<-all.vars(seg.Z)
if(length(nomeX)==1) {
Z<- eval(parse(text=nomeX))
} else {
stop("a single segmented variable should be specified in 'seg.Z' ")
}
}
olm <- lm(y~x)
} else {
if(!inherits(olm,"lm")) stop("'olm' does not appear a (g)lm fit")
y<- model.response(model.frame(olm))
if(is.matrix(y)){
nomeY<-colnames(y)
} else {
nomeY<- all.vars(formula(olm))[1]
}
#browser()
if(missing(seg.Z)){
nomeX <- setdiff(all.vars(formula(olm)), nomeY)
if(length(nomeX)==0 || length(nomeX)>1 || any(is.na(nomeX))) stop("I cannot determine the segmented variable")
seg.Z<- as.formula(paste("~", nomeX ))
Z <- olm$model[[nomeX]]
if(!is.numeric(Z)) stop("The variable in the starting model does not appear to be numeric")
} else {
if(length(all.vars(seg.Z))>1) stop("Multiple variables are not allowed in seg.Z")
nomeX<-all.vars(seg.Z)
Z <- if(nomeX%in%all.vars(formula(olm))) olm$model[[nomeX]] else eval(parse(text=nomeX))
}
}
m1 <-min(Z)
m2 <-max(Z)
if(is.null(th)) th <- diff(range(Z))/100
if(G==1){
build.mf<-function(o, data=NULL){
#returns the dataframe including the possibly untransformed variables,
#including weight and offset
fo<-formula(o)
if(!is.null(o$weights))
fo<-update.formula(fo,paste("~.+",all.vars(o$call$weights), sep=""))
if(!is.null(o$call$offset))
fo<-update.formula(fo,paste("~.+",all.vars(o$call$offset), sep=""))
if(!is.null(o$call$subset))
fo<-update.formula(fo,paste("~.+",all.vars(o$call$subset), sep=""))
#o$call$formula<-fo
if(is.null(o$call$data)) {
R<-get_all_vars(fo)
} else {
R<-get_all_vars(fo, data=eval(o$call$data))
}
R
}
#browser()
if(type%in%c("bic","aic")){
control1<-control
control1$n.boot = 0
control1$tol <- .001 #default e' .00001
control1$alpha<-.01 #se lo aumenti puo' non funzionare bene se ci sono molti psi da selezionare..
ICname<- if(type=="bic") "BIC" else "AIC"
BIC.f<-if(type=="bic") BIC else AIC
bicM0 <- BIC.f(olm)
Kmax <- min(floor((olm$df.residual-1)/2), Kmax)
npsi<-1:Kmax
startpsi<-vector("list", length(npsi))
conv<-bic.values<- rep(NA, length(npsi))
if(!is.null(olm$call$data)) assign(paste(olm$call$data), eval(olm$call$data, envir=parent.frame() ))
npsiVeri<-0
#fit with 1 breakpoint
.a<-capture.output(os<- suppressWarnings(try(segmented(olm, seg.Z, npsi=1, control=control1), silent=TRUE)))
ris<- NULL
ris[[1]] <- os #<- suppressWarnings(try(segmented(olm, seg.Z, npsi=1, control=control1), silent=TRUE))
#if fails try boot restating
if(inherits(os, "try-error")) {
.a <- capture.output(os<- suppressWarnings(try(segmented(olm, seg.Z, npsi=1, control=control), silent=TRUE)))
ris[[1]]<- os
}
if(inherits(os, "segmented")){
#if(is.null(th)) th <- drop(diff(os$rangeZ)/100)
bic.values[1]<- BIC.f(os)
Z<- os$model[,os$nameUV$Z]
estpsi <- os$psi[,"Est."]
M<-matrix(c(m1 ,rep(estpsi, each=2), m2), ncol=2, nrow=length(estpsi)+1, byrow=TRUE)
psi0 <- sum(M[which.max(apply(M,1,diff)),])/2
startpsi[[1]] <- sort(c(estpsi, psi0))
conv[1] <- 1
npsiVeri[length(npsiVeri)+1]<- length(estpsi)
} else {
estpsi <- (m1+m2)/2
M<-matrix(c(m1 ,rep(estpsi, each=2), m2), ncol=2, nrow=length(estpsi)+1, byrow=TRUE)
#psi0 <- sum(M[which.max(apply(M,1,diff)),])/2
startpsi[[1]] <- estpsi
bic.values[1]<- BIC.f(olm)+1
conv[1] <- 0
npsiVeri[length(npsiVeri)+1]<- 1
}
i=1 #ponilo =1
if(Kmax>=2){
if(msg) {
flush.console()
cat(paste("No. of breakpoints: "))
}
earlyStop<- FALSE
#==========================================================================================
#= inizio for
#browser()
for(i in 2:Kmax){
#source("C:/dati/lavori/segmented/segIntermedio/segmented/R/selgmented.R")
#if(i==3) browser()
.a <- capture.output(os<-suppressWarnings(try(segmented(olm, seg.Z, psi=startpsi[[i-1]], control=control1), silent=TRUE)))
if(msg) {
flush.console()
cat(paste(i,".. "))
}
if(inherits(os, "segmented")) {
conv[i]<-1
estpsi <- os$psi[,"Est."]
bic.values[i]<- BIC.f(os) #-2*logLik(ris[[i]]))+ edf*log(n)*Cn
ris[[length(ris)+1]]<- os
npsiVeri[length(npsiVeri)+1]<-length(estpsi)
id<- which(diff(estpsi)<=th)+1
if(length(id)>0){ #se ci sono psi troppo vicini..
#elimina quelli "vicini" aggiungine altri in modo da stimare un altro modello con lo stesso numero di psi
#Quindi alla fine dovresti avere 2 o piu' bic per uno stesso numero di breakpoints
estpsi <- estpsi[-id]
M<-matrix(c(m1 ,rep(estpsi, each=2), m2), ncol=2, nrow=length(estpsi)+1, byrow=TRUE)
diffpsi <- apply(M,1,diff)
psi0<-NULL
for(j in 1:(length(id))) {
psi0[length(psi0)+1] <- sum(M[which(diffpsi==rev(sort(diffpsi))[j]),])/2
}
startpsi[[i]] <- sort(c(estpsi, psi0))
} else {
#aggiungi uno starting psi
M<- matrix(c(m1 ,rep(estpsi, each=2), m2), ncol=2, nrow=length(estpsi)+1, byrow=TRUE)
diffpsi <- apply(M,1,diff)
id.max.diffpsi <- which.max(diffpsi)
psi0 <- sum(M[id.max.diffpsi,])/2
startpsi[[i]] <- sort(c(estpsi, psi0))
}
} else {
#Vuoi provare a ri-stimarlo con il boot rest?
#se non e' arrivato a convergenza:
# 1) prima prova a cambiare gli starting psi
# 2) prova con il boot restart
M<-matrix(c(m1 ,rep(startpsi[[i-1]], each=2), m2),
ncol=2, nrow=length(startpsi[[i-1]])+1, byrow=TRUE)
diffpsi <- apply(M,1,diff)
psi0 <- sum(M[which.max(diffpsi),])/2
start.ora<- sort(c(psi0, M[-c(which.min(diffpsi), nrow(M)),2]))
startpsi[[i-1]] <- start.ora
.a <- capture.output(os<-suppressWarnings(try(segmented(olm, seg.Z, psi=start.ora, control=control1), silent=TRUE)))
if(!inherits(os, "segmented")) { #vai con il boot restrat
.a <- capture.output(os<-suppressWarnings(try(segmented(olm, seg.Z, psi=start.ora, control=control), silent=TRUE)))
}
if(inherits(os, "segmented")) {
conv[i]<-1
estpsi <- os$psi[,"Est."]
bic.values[i]<- BIC.f(os) #-2*logLik(ris[[i]]))+ edf*log(n)*Cn
ris[[length(ris)+1]]<- os
npsiVeri[length(npsiVeri)+1]<-length(estpsi)
#aggiungi uno starting psi
M<-matrix(c(m1 ,rep(estpsi, each=2), m2), ncol=2, nrow=length(estpsi)+1, byrow=TRUE)
diffpsi <- apply(M,1,diff)
id.max.diffpsi <- which.max(diffpsi)
psi0 <- sum(M[id.max.diffpsi,])/2
startpsi[[i]] <- sort(c(estpsi, psi0))
} else {
#se dopo 3 tentativi non e' arrivato a conv comunque aggiungi uno starting psi,
# il bic e' bic.precedente+1 e ris[[i]] sara' NA
#control1$alpha<-.005
ris[[length(ris)+1]]<- NA
conv[i]<-0
bic.values[i]<- bic.values[i-1]+1
M<-matrix(c(m1 ,rep(startpsi[[i-1]], each=2), m2),
ncol=2, nrow=length(startpsi[[i-1]])+1, byrow=TRUE)
diffpsi <- apply(M,1,diff)
psi0 <- sum(M[which.max(diffpsi),])/2
#aggiunge un psi ai precedenti
startpsi[[i]] <- sort(c(startpsi[[i-1]], psi0))
npsiVeri[length(npsiVeri)+1]<- length(startpsi[[i-1]])
}
}
#if(i==8) browser()
#un controllo su bic values.. fermarsi SE gli ultimi K sono NA oppure sono crescenti!!
#bic.values<-bic.values[!is.na(bic.values)]
#ind1 e' se gli ultimi modelli non sono arrivati a convergenza per cui il bic e' stato aumentato di 1 rispetto al precedente..
#poiche' ci possono essere piu' bic per uno stesso numero di break, ne devi considerare solo uno (il minimo)
#altrimenti -se i bic per uno stesso numero di break sono decrescenti- la valutazione del bic crescente e' sballata
#if(i==5) browser()
bicValuesTest<-tapply(na.omit(c(bicM0,bic.values)), npsiVeri, min)
ind1<-(i>=stop.if && all(diff(rev(na.omit(bicValuesTest)))[1:3]==-1))
ind2<-(i>=stop.if&& length(bicValuesTest)>stop.if && all(rev(na.omit(diff(bicValuesTest)))[1:stop.if]>0))
if(ind1 || ind2) {earlyStop<-TRUE;break}
} #end in for(2 in Kmax)
#browser()
#if(msg) cat(paste(" =>", length(psi.withCut)-length(bicVa), "unevaluated model(s) due to", stop.if, "increasing A/BIC value(s)..\n"))
if(msg) cat("\n")
} else { #se Kmax=1
earlyStop<-FALSE
}
#npsiVeri <-sapply(ris, function(.x) if(is.list(.x))nrow(.x$psi) else NA ) #[1:i]
#npsiVeri <- npsiVeri[!is.na(npsiVeri)]
#if(length(npsiVeri)!=max(npsiVeri)) {
# id.psi.repl<-which(diff(npsiVeri)==0)
# sapply(id.psi.repl, function(.x) which(npsiVeri==.x))
#}
bic.valuesOrig <- bic.values
#bic.values<- bic.values#[1:i] #bic.values[!is.na(bic.values)]
bic.values <- c(bicM0, bic.values)
bic.values <- bic.values[1:length(npsiVeri)]
names(bic.values)<-npsiVeri
n.psi.ok<- npsiVeri[which.min(bic.values)]
#browser()
if(n.psi.ok==0){
m<-matrix(NA,1,1, dimnames=list(NULL, "Est."))
olm$selection.psi<- list(bic.values=bic.values, npsi=n.psi.ok)
olm$psi<-m
if(msg){
if(earlyStop) cat(paste("(search truncated at ", i, " breakpoints due to increasing values of ", ICname ,") \n", sep=""))
cat(paste("\n",ICname, " to detect no. of breakpoints:\n",sep=""))
print(bic.values)
cat(paste("\nNo. of selected breakpoints: ", n.psi.ok, " \n"))
}
bic.values=rbind(npsiVeri, bic.values)
rownames(bic.values)<-c("npsi", paste(ICname, "value",sep=""))
selection.psi <- list(bic.values=bic.values, npsi=n.psi.ok)
if(return.fit) {
#browser()
olm$selection.psi <- selection.psi
return(olm)
} else {
return(list(selection.psi=selection.psi))
#return(list(bic.values=bic.values, npsi=n.psi.ok))
}
}
#browser()
if(Kmax==n.psi.ok && msg) warning(paste("The best",ICname, "value at the boundary. Increase 'Kmax'?"), call.=FALSE, immediate. = TRUE)
id.best<- which.min(bic.values[-1])
#browser()
r<- r0 <- ris[[id.best]]
#browser()
rm.after.check <- 0
all.psi<- r$psi[,"Est."]
if(check.dslope){
soglia <- if(!bonferroni) qnorm(1-alpha/2) else qnorm(1-alpha/(2* length(r$nameUV$U)))
tU <- abs(summary(r)$coefficients[r$nameUV$U, 3])
#if(length(tU[tU<=soglia])==length(tU)) #anche se tutti i t<= soglia fai comunque la procedura, perche'
#riducendo i psi, i tU potrebbero cambiare
#rm.id <- which.min(tU[tU<=soglia])
rm.id <- f(tU, soglia)
while(length(rm.id)>0){
rm.after.check <- rm.after.check+1
all.psi <- all.psi[-rm.id]
if(length(all.psi)<=0) break
r0$call$psi=quote(all.psi)
.a <- capture.output(r <- suppressWarnings(try(update(r0), silent=TRUE))) #senza boot
if(!inherits(r,"segmented")){ #facciamo un altro tentativo..
#r0$call$psi=all.psi
#control$alpha <- .005
r0$call$control<-control #con boot
.a <- capture.output(r<-suppressWarnings(try(r<-update(r0), silent=TRUE)))
}
if(inherits(r,"segmented")){
tU <- abs(summary(r)$coefficients[r$nameUV$U, 3])
#rm.id <- which.min(tU[tU<=soglia])
rm.id <- f(tU, soglia)
all.psi<-r$psi[,"Est."]
} else {
rm.id<-1
}
}
#browser()
if(length(all.psi)<=0 || is.null(r$psi) ) {
n.psi.ok<-0
r<- olm
} else {
n.psi.ok <- nrow(r$psi)
}
} else { #end if(check.dslope)
#ATTENZIONE: SE NON HA SELEZIONATO BREAKPOINTS???
n.psi.ok<-length(all.psi) #in realta' gia' c'e' "n.psi.ok"
}
if(refit && length(all.psi)>0){
r$call$psi<- all.psi
#control$alpha <- .005
r$call$control<-quote(control) #con boot
r <- update(r)
}
if(plot.ic) {
if(rm.after.check!=0){
warning(paste("Some psi have been removed due to check on the slope difference; the", ICname, "plot could be misleading"), call.=FALSE)
}
plot(npsiVeri, bic.values, xlab=" No. of breakpoints", ylab=ICname, type="o")
points(n.psi.ok, min(bic.values), pch=19, cex=1.1)
}
#browser()
if(msg){
if(earlyStop) cat(paste("(search truncated at ", i, " breakpoints due to ", stop.if, " increasing values of ", ICname ,") \n", sep=""))
cat(paste("\n",ICname, " to detect no. of breakpoints:\n",sep=""))
print(bic.values)
add.msg <- if(rm.after.check==0) " \n" else paste(" (", rm.after.check, " breakpoint(s) removed due to small slope diff)\n", sep="")
cat(paste("\nNo. of selected breakpoints:", n.psi.ok, add.msg))
}
if(!return.fit) {
bic.values=rbind(npsiVeri, bic.values)
rownames(bic.values)<-c("npsi", paste(ICname, "value",sep=""))
r<-list(selection.psi=list(bic.values=bic.values, npsi=n.psi.ok))
return(r)
}
bic.values=rbind(npsiVeri, bic.values)
rownames(bic.values)<-c("npsi", paste(ICname, "value",sep=""))
r$selection.psi <- list(bic.values=bic.values, npsi=n.psi.ok)
if(refit) r$selection.psi$psi.before.refit <-all.psi
return(r)
} else {
#end aic/bic. Quindi se score o davies
alpha.adj<-alpha/Kmax
p1<- if(type=="score") pscore.test(olm, seg.Z, n.break=2)$p.value else davies.test(olm)$p.value
p1.label<-"p-value '0 vs 2' "
if(p1>alpha.adj){
p2.label<-"p-value '0 vs 1' "
p2<- if(type=="score") pscore.test(olm, seg.Z, n.break=1)$p.value else p1 #davies.test(olm)$p.value
if(!bonferroni) alpha.adj<- alpha
if(p2>alpha.adj) {
out<-olm
} else {
out<-segmented(olm, seg.Z, npsi=1, control=control)
}
} else {
p2.label<-"p-value '1 vs 2' "
#################
#browser()
#MF<-build.mf(olm)
#olm<-update(olm, data=MF)
#olm$call$data<-quote(MF)
#olm<-update(olm, data=model.frame(olm)) #questo e' necessario per far funzionare davies.test() sotto..
################
if(type=="score") {
o1<-segmented(olm, seg.Z, npsi=1, control=control)
p2<-pscore.test(o1, seg.Z, more.break=TRUE)$p.value
} else {
#KK<-new.env()
#olm1<-update(olm, data=model.frame(o1))
#o1<- update(o1, obj=olm1)
MF<-build.mf(olm)
olm<-update(olm, data=MF)
#olm$call$data<-quote(MF)
#olm<-update(olm, data=model.frame(olm)) #questo e' necessario per far funzionare davies.test() sotto..
o1 <- segmented(olm, seg.Z, npsi = 1, control = control)
p2<- davies.test(o1, seg.Z)$p.value
}
if(!bonferroni) alpha.adj<-alpha
if(p2>alpha.adj) {
o1<-segmented(olm, seg.Z, npsi=1, control=control)
#cat("One breakpoint detected\n")
out<-o1
} else {
o2<-segmented(olm, seg.Z, npsi=2, control=control)
#cat("Two breakpoint detected\n")
out<-o2
}
}
n.psi.ok<-length(out$psi[,"Est."])
x2<- -2*sum(log(c(p1,p2)))
p<-1-pchisq(x2, df=2*2)
r<-list(pvalues=c(p1=p1, p2=p2, p=p), npsi=n.psi.ok)
attr(r, "label")<- p2.label
if(!return.fit) {
return(r)
}
if(msg){
cat("Hypothesis testing to detect no. of breakpoints\n")
type <- chartr(strsplit(type,"")[[1]][1], toupper(strsplit(type,"")[[1]][1]), type) #serve per render maiuscola la prima lettera..
cat(paste("statistic:", type," level:", alpha, " Bonferroni correction:", bonferroni, "\n"))
cat(paste(p1.label, "= ", format.pval(p1,4), " ", p2.label, "= ", format.pval(p2,4) ,
" \nOverall p-value = ", format.pval(p,4),"\n",sep=""))
cat(paste("No. of selected breakpoints: ", n.psi.ok, "\n"))
}
out$selection.psi<-r
return(out)
}#end if(score o davies)
} else { #se G>1
r <- sel1(y=y, x=Z, G=G, Kmax=Kmax, type=type, th=th, refit=refit, check.dslope = check.dslope,
msg=msg, bonferroni=bonferroni, olm=olm, control=control)
r
}
}
|