1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
step.glm.fit<-function(y, x.lin, Xtrue, PSI, ww, offs, opz, return.all.sol=FALSE){
#----------------------
search.min<-function(h, psi, psi.old, X, y, w, offs, id.fix.psi=NULL) {
psi.ok<- psi*h + psi.old*(1-h)
psi.ok[id.fix.psi]<- psi.old[id.fix.psi]
PSI <- matrix(rep(psi.ok, rep(n, length(psi.ok))), ncol = length(psi.ok))
U1 <- (Xtrue>PSI) #(Z - PSI) * (Z > PSI)
#if (pow[1] != 1) U1 <- U1^pow[1]
obj1 <- try(suppressWarnings(glm.fit(x = cbind(X, U1), y = y, offset = offs,
weights = w, family = fam, control = glm.control(maxit = maxit.glm1[i]), etastart = eta0)),
silent = TRUE)
L1 <- if (class(obj1)[1] == "try-error") L0 + 10 else obj1$dev
attr(L1, "eta") <- obj1$linear.predictor
L1
}
toMatrix<-function(.x, ki){
# ripete ogni .x[,j] ki[j] volte
if(ncol(.x)!=length(ki)) stop("It should be ncol(.x)==length(ki)")
if(all(ki==1)) return(.x)
M<-vector("list", length=length(ki))
for(j in 1:length(ki)) M[[j]]<-replicate(ki[[j]], cbind(.x[,j]), simplify=TRUE)
do.call(cbind, M)
}
### -----
# mylm<-function(x,y,w=1,offs=0){
# x1<-x*sqrt(w)
# y<-y-offs
# y1<-y*sqrt(w)
# b<-drop(solve(crossprod(x1),crossprod(x1,y1)))
# fit<-drop(tcrossprod(x,t(b)))
# r<-y-fit
# o<-list(coefficients=b,fitted.values=fit,residuals=r, df.residual=length(y)-length(b))
# o
# }
#-----------
adj.psi <- function(psii, LIM) {
pmin(pmax(LIM[1, ], psii), LIM[2, ])
}
#------------
#-----------
fam<-opz$fam
maxit.glm<-opz$maxit.glm
#--------------
tol<-opz$toll
display<-opz$display
it.max<-opz$it.max
#dev0<-opz$dev0
useExp.k<-opz$useExp.k
min.step<- opz$min.step #=.0001
conv.psi<-opz$conv.psi #=FALSE
alpha<-opz$alpha
#limZ <- apply(Xtrue, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))
limZ <- if(is.null(opz$limZ)) apply(Xtrue, 2, quantile, names=FALSE, probs=alpha) else opz$limZ
fix.npsi<-opz$fix.npsi
agg<-opz$agg
hh <-opz$h
npsii<-opz$npsii
npsi<- sum(npsii) #opz$npsi
P<-length(npsii) #P<-opz$P
digits<-opz$digits
rangeZ<-opz$rangeZ
# pos.vec <- 1:npsi
# pos <- vector("list", P)
# ind <- 0
pos<- tapply(1:npsi, rep(1:P, npsii), list)
i <- 0
agg <- rep(agg, npsi)
# direz <- matrix(NA, it.max, npsi)
# conv <- rep(FALSE, npsi)
# ind.conv <- NULL
n<-length(y)
plin<-ncol(x.lin)
epsilon<-10
k.values<-dev.values<- NULL
psi.values <-list()
psi.values[[length(psi.values) + 1]] <- NA
#PSI0<- matrix(psi0, n, npsi, byrow = TRUE)
XREG <- cbind(x.lin, Xtrue>PSI)
if(it.max==0){
obj <- suppressWarnings(glm.fit(x = XREG, y = y, offset = offs,
weights = ww, family = fam))
L1 <- obj$dev
obj$epsilon <- epsilon
idZ<-(plin+1):(plin+ncol(PSI))
b<- obj$coef[idZ]
obj <- list(obj = obj, psi = PSI[1,], psi.values = psi.values,
rangeZ = rangeZ, beta.c=b, epsilon = epsilon,
SumSquares.no.gap = L1,
id.warn = TRUE)
return(obj)
}
if(!opz$usestepreg){
dev.values[length(dev.values) + 1] <- opz$dev0 #modello senza psi
psi.values[[length(psi.values) + 1]] <- NA #nessun psi
}
if(is.null(opz$fit.psi0)){
obj <- suppressWarnings(glm.fit(x = XREG, y = y, offset = offs,
weights = ww, family = fam, etastart=opz$eta0))
L0 <- obj$dev
eta0 <- obj$linear.predictors
} else {
L0 <- opz$fit.psi0$L0
eta0 <- opz$fit.psi0$eta0
}
n.intDev0<-nchar(strsplit(as.character(L0),"\\.")[[1]][1])
#dev.values[length(dev.values) + 1] <- dev0#opz$dev0 #del modello iniziale (senza psi)
dev.values[length(dev.values) + 1] <- L0 #modello con psi iniziali
psi0<-PSI[1,]
psi.values[[length(psi.values) + 1]] <- psi0 #psi iniziali
if(is.null(maxit.glm)){
Nboot <- if(is.null(opz$Nboot)) 0 else opz$Nboot
maxit.glm1 <- rep(1:it.max + Nboot, 1:it.max+1) #2*rep(1:it.max, 1:it.max)
maxit.glm1 <- pmin(maxit.glm1, 25)
} else {
maxit.glm1 <- rep(maxit.glm, it.max)
}
#==============================================
if (display) {
unlpsi<- unlist(psi0)
Lp<-length(unlpsi)
cat(paste("iter = ", sprintf("%2.0f",0),
#" dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L0), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
" dev = ", sprintf("%1.5f", as.numeric(strsplit(format(L0, scientific=TRUE), "e")[[1]][1])),
" k = ", sprintf("%5.0f", NA),
" n.psi = ",formatC(Lp,digits=0,format="f"),
" ini.psi = ",paste(formatC(unlpsi[1:min(5,Lp)],digits=3,format="f"), collapse=" "), #sprintf('%.2f',x)
sep=""), "\n")
}
id.warn <- FALSE
low <- apply(Xtrue[,unique(colnames(Xtrue)),drop=FALSE], 2, min)
up <- apply(Xtrue[,unique(colnames(Xtrue)),drop=FALSE], 2, max)
L1<-L0+10
tolOp<-if(is.null(opz$tol.opt)) seq(.001, .Machine$double.eps^0.25, l=it.max) else rep(opz$tol.opt, it.max)
#==============================================
idZ<-(plin+1):(plin+ncol(PSI))
idW<-(plin+ncol(PSI)+1): ( plin+2*ncol(PSI))
while (abs(epsilon) > tol) {
i <- i + 1
#if(i==1) browser()
xx <- Xtrue[,cumsum(npsii),drop=FALSE]
for (p in 1:P) {
psis <- sort(psi0[pos[[p]]])
gruppi <- cut(xx[,p], breaks = c(low[p] - 0.1, psis, up[p]), labels = FALSE)
if(any(is.na(gruppi))) stop(paste("too many breaks for step term #", p, "?"), call.=TRUE)
points <- c(low[p], psis, up[p])
right <- c(low[p], points[2:(npsii[p] + 1)] + agg[pos[[p]]][order(psi0[pos[[p]]])] * (points[3:(npsii[p] + 2)] - points[2:(npsii[p] + 1)]), NA)
left <- c(NA, points[2:(npsii[p] + 1)] - agg[pos[[p]]][order(psi0[pos[[p]]])] * (points[2:(npsii[p] + 1)] - points[1:npsii[p]]), up[p])
#if(any(is.na(left))| any(is.na(right))) stop(paste("too many breaks for step term #", p, "?"), call.=TRUE)
for (j in 1:(npsii[p] + 1)) {
xx.j <- xx[,p][gruppi == j]
xx[,p][gruppi == j] <- right[j] + (xx.j - points[j]) *
((left[j + 1] - right[j])/(points[j + 1] - points[j]))
}
}
XX<-toMatrix(xx, npsii)
PSI<- matrix(psi0, n, npsi, byrow = TRUE)
W <- (1/(2 * abs(XX - PSI)))
Z <- (XX * W + 1/2)
XREG <- cbind(x.lin, Z, W)
#obj<-try(mylm(XREG,y,w=ww,offs=offs), silent = TRUE)
#if(class(obj)[1]=="try-error")
# obj <- lm.wfit(y = y, x = XREG, offset = offs, w=ww )
#b <- obj$coef[(2:(sum(k) + 1))]
#g <- obj$coef[((sum(k) + 2):(2 * sum(k) + 1))]
obj <- suppressWarnings(glm.fit(x = XREG, y = y, offset = offs,
weights = ww, family = fam, control = glm.control(maxit = maxit.glm1[i]), etastart = eta0))
#idZ<-(plin+1):(plin+ncol(Z))
#idW<-(plin+ncol(Z)+1): ( plin+ncol(Z)+ncol(W))
b<- obj$coef[idZ]
g<- obj$coef[idW]
if(any(is.na(c(b, g)))){
if(return.all.sol) return(list(dev.values, psi.values)) else stop("breakpoint estimate too close or at the boundary causing NA estimates.. too many breakpoints being estimated?", call.=FALSE)
}
psi1 <- -g/b
psi1<- psi0+ opz$h*(psi1-psi0)
#aggiusta la stima di psi..
psi1<- adj.psi(psi1, limZ)
psi1<-unlist(tapply(psi1, opz$id.psi.group, sort), use.names =FALSE)
#if(i==1) browser()
#la f e' chiaramente a gradino per cui meglio dividere..
a0<-optimize(search.min, c(0,.5), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, tol=tolOp[i])
a1<-optimize(search.min, c(.5,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, tol=tolOp[i])
a <-if(a0$objective<=a1$objective) a0 else a1
#a0<-optimize(search.min, c(0,.33), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
#a1<-optimize(search.min, c(.33,.66), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
#a2<-optimize(search.min, c(.66,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
#a<-if(a2$objective<=a$objective) a2 else a
if(a$objective<L0){
k.values[length(k.values) + 1] <- use.k <- a$minimum
L1<- a$objective
eta0<- attr(a$objective, "eta")
} else {
k.values[length(k.values) + 1] <- use.k <- 0
L1<- L0
}
if(use.k<=.01){
k.List<-j.List<-NULL
for(j in 1:length(psi1)){
a0<-optimize(search.min, c(0,.5), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, id.fix.psi=j, tol=tolOp[i])
a1<-optimize(search.min, c(.5,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, id.fix.psi=j, tol=tolOp[i])
a <-if(a0$objective<=a1$objective) a0 else a1
if(a$objective<L1){
j.List[[j]]<-setdiff(1:length(psi1),j) #indici di psi che devono cambiare..
k.List[[j]]<-a$minimum
} else {
j.List[[j]]<-NA
k.List[[j]]<-NA
}
}
id.to.be.changed<- unique(unlist(j.List[!sapply(k.List, is.na)]))
if(!is.null(id.to.be.changed)){
use.k<-rep(0,length(psi1))
use.k[id.to.be.changed] <-mean(unlist(k.List[!sapply(k.List, is.na)]))
psi1 <- psi1*use.k + psi0* (1-use.k)
use.k<-mean(use.k)
L1=search.min(1, psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
} else {
psi1<-psi0
}
} else {
psi1 <- psi1*use.k + psi0* (1-use.k)
}
if (!is.null(digits)) psi1 <- round(psi1, digits)
#PSI1 <- matrix(psi1, n, npsi, byrow = TRUE)
#XREG1 <- cbind(x.lin, Xtrue>PSI1)
#obj1 <- try(mylm(XREG1, y, ww, offs), silent = TRUE)
#if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(XREG1, y, ww, offs), silent = TRUE)
delta<- psi1-psi0
if (display) {
flush.console()
#n.intDev0<-nchar(strsplit(as.character(dev.values[2]),"\\.")[[1]][1])
unlpsi<- unlist(psi1)
Lp<-length(unlpsi)
cat(paste("iter = ", sprintf("%2.0f",i),
#" dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
" dev = ", sprintf("%1.5f", as.numeric(strsplit(format(L1, scientific=TRUE), "e")[[1]][1])),
" k = ", sprintf("%2.3f", use.k),
" n.psi = ",formatC(Lp,digits=0,format="f"),
" est.psi = ",paste(formatC(unlpsi[1:min(Lp,5)],digits=3,format="f"), collapse=" "), #sprintf('%.2f',x)
sep=""), "\n")
}
epsilon <- (L0 - L1)/(abs(L0) + 0.1)
L0<-L1
k.values[length(k.values)+1]<-use.k
psi.values[[length(psi.values) + 1]] <- psi1
dev.values[length(dev.values) + 1] <- L0
if (i >= it.max) {
id.warn <- TRUE
break
}
psi0<-psi1
} #end while_it
#browser()
psi1 <-unlist(tapply(psi1, opz$id.psi.group, sort))
PSI<- matrix(psi1, n, npsi, byrow = TRUE)
U <- 1*(Xtrue>PSI)
#ATTENZIONE .. Assume che obj sia stato stimato sempre!
obj<-list(obj=obj, psi=psi1, psi.values=psi.values, rangeZ=rangeZ, SumSquares.no.gap=L1,
beta.c=b, it=i, epsilon=epsilon, id.warn=id.warn, U=U, eta0=eta0)
return(obj)
} #end jump.fit
|