File: step.glm.fit.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (301 lines) | stat: -rw-r--r-- 11,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
step.glm.fit<-function(y, x.lin, Xtrue, PSI, ww, offs, opz, return.all.sol=FALSE){  
  #----------------------
  search.min<-function(h, psi, psi.old, X, y, w, offs, id.fix.psi=NULL) {
    psi.ok<- psi*h + psi.old*(1-h)
    psi.ok[id.fix.psi]<- psi.old[id.fix.psi]
    PSI <- matrix(rep(psi.ok, rep(n, length(psi.ok))), ncol = length(psi.ok))
    U1 <- (Xtrue>PSI) #(Z - PSI) * (Z > PSI)
    #if (pow[1] != 1) U1 <- U1^pow[1]
    obj1 <- try(suppressWarnings(glm.fit(x = cbind(X, U1), y = y, offset = offs,
                      weights = w, family = fam, control = glm.control(maxit = maxit.glm1[i]), etastart = eta0)),
                      silent = TRUE)
    L1 <- if (class(obj1)[1] == "try-error") L0 + 10 else obj1$dev
    attr(L1, "eta") <- obj1$linear.predictor
    L1
  }
  toMatrix<-function(.x, ki){
    # ripete ogni .x[,j] ki[j] volte
    if(ncol(.x)!=length(ki)) stop("It should be ncol(.x)==length(ki)")
    if(all(ki==1)) return(.x)
    M<-vector("list", length=length(ki))
    for(j in 1:length(ki)) M[[j]]<-replicate(ki[[j]], cbind(.x[,j]), simplify=TRUE)
    do.call(cbind, M)
  }
  ### -----
  # mylm<-function(x,y,w=1,offs=0){
  #   x1<-x*sqrt(w)
  #   y<-y-offs
  #   y1<-y*sqrt(w)
  #   b<-drop(solve(crossprod(x1),crossprod(x1,y1)))
  #   fit<-drop(tcrossprod(x,t(b)))
  #   r<-y-fit
  #   o<-list(coefficients=b,fitted.values=fit,residuals=r, df.residual=length(y)-length(b))
  #   o
  # }
  #-----------
  adj.psi <- function(psii, LIM) {
    pmin(pmax(LIM[1, ], psii), LIM[2, ])
  }
  #------------
  #-----------
  
  fam<-opz$fam
  maxit.glm<-opz$maxit.glm
  #--------------
  tol<-opz$toll
  display<-opz$display
  it.max<-opz$it.max
  #dev0<-opz$dev0
  useExp.k<-opz$useExp.k
  min.step<- opz$min.step #=.0001
  conv.psi<-opz$conv.psi #=FALSE
  alpha<-opz$alpha
  #limZ <- apply(Xtrue, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))
  limZ <- if(is.null(opz$limZ)) apply(Xtrue, 2, quantile, names=FALSE, probs=alpha) else opz$limZ
  
  fix.npsi<-opz$fix.npsi
  agg<-opz$agg
  hh <-opz$h
  npsii<-opz$npsii
  npsi<- sum(npsii) #opz$npsi
  P<-length(npsii) #P<-opz$P
  digits<-opz$digits
  rangeZ<-opz$rangeZ
  
  #  pos.vec <- 1:npsi
  #  pos <- vector("list", P)
  #  ind <- 0
  pos<- tapply(1:npsi, rep(1:P, npsii), list)
  i <- 0
  agg <- rep(agg, npsi)
  #  direz <- matrix(NA, it.max, npsi)
  #  conv <- rep(FALSE, npsi)
  #  ind.conv <- NULL
  n<-length(y)
  plin<-ncol(x.lin)
  epsilon<-10
  k.values<-dev.values<- NULL
  psi.values <-list()
  psi.values[[length(psi.values) + 1]] <- NA
  #PSI0<- matrix(psi0, n, npsi, byrow = TRUE)
  XREG <- cbind(x.lin, Xtrue>PSI)

  if(it.max==0){
    obj <- suppressWarnings(glm.fit(x = XREG, y = y, offset = offs,
                                    weights = ww, family = fam))
    L1 <- obj$dev 
    obj$epsilon <- epsilon
    idZ<-(plin+1):(plin+ncol(PSI))
    b<- obj$coef[idZ]
    obj <- list(obj = obj, psi = PSI[1,], psi.values = psi.values, 
                rangeZ = rangeZ, beta.c=b, epsilon = epsilon,  
                SumSquares.no.gap = L1,  
                id.warn = TRUE)
    return(obj)
  } 
  
  if(!opz$usestepreg){
    dev.values[length(dev.values) + 1] <- opz$dev0 #modello senza psi 
    psi.values[[length(psi.values) + 1]] <- NA #nessun psi 
  }
  
  if(is.null(opz$fit.psi0)){
    obj <- suppressWarnings(glm.fit(x = XREG, y = y, offset = offs,
                                    weights = ww, family = fam, etastart=opz$eta0))
    L0 <- obj$dev
    eta0 <- obj$linear.predictors
  } else {
    L0   <- opz$fit.psi0$L0
    eta0 <- opz$fit.psi0$eta0
  }
    

  n.intDev0<-nchar(strsplit(as.character(L0),"\\.")[[1]][1])
  #dev.values[length(dev.values) + 1] <- dev0#opz$dev0 #del modello iniziale (senza psi)
  dev.values[length(dev.values) + 1] <- L0 #modello con psi iniziali
  psi0<-PSI[1,]
  psi.values[[length(psi.values) + 1]] <- psi0 #psi iniziali
  
  if(is.null(maxit.glm)){
    Nboot <- if(is.null(opz$Nboot)) 0 else opz$Nboot
    maxit.glm1 <- rep(1:it.max + Nboot, 1:it.max+1) #2*rep(1:it.max, 1:it.max)
    maxit.glm1 <- pmin(maxit.glm1, 25)
  } else {
    maxit.glm1 <- rep(maxit.glm, it.max)
  }
  
  
  #==============================================
  if (display) {
    unlpsi<- unlist(psi0)
    Lp<-length(unlpsi)
    
    cat(paste("iter = ", sprintf("%2.0f",0),
              #"  dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L0), #formatC(L1,width=8, digits=5,format="f"), #era format="fg" 
              "  dev = ",  sprintf("%1.5f", as.numeric(strsplit(format(L0, scientific=TRUE), "e")[[1]][1])),
              "  k = ", sprintf("%5.0f", NA),
              "  n.psi = ",formatC(Lp,digits=0,format="f"), 
              "  ini.psi = ",paste(formatC(unlpsi[1:min(5,Lp)],digits=3,format="f"), collapse="  "), #sprintf('%.2f',x)
              sep=""), "\n")
  }
  id.warn <- FALSE
  
  low <- apply(Xtrue[,unique(colnames(Xtrue)),drop=FALSE], 2, min)
  up <-  apply(Xtrue[,unique(colnames(Xtrue)),drop=FALSE], 2, max)
  
  
  L1<-L0+10
  tolOp<-if(is.null(opz$tol.opt)) seq(.001, .Machine$double.eps^0.25, l=it.max) else rep(opz$tol.opt, it.max)
  #==============================================
  
  idZ<-(plin+1):(plin+ncol(PSI))
  idW<-(plin+ncol(PSI)+1): ( plin+2*ncol(PSI))
  
  while (abs(epsilon) > tol) {
    i <- i + 1
    #if(i==1) browser()
    xx <- Xtrue[,cumsum(npsii),drop=FALSE]
    for (p in 1:P) {
      psis <- sort(psi0[pos[[p]]])
      gruppi <- cut(xx[,p], breaks = c(low[p] - 0.1, psis, up[p]), labels = FALSE)
      if(any(is.na(gruppi))) stop(paste("too many breaks for step term #", p, "?"), call.=TRUE)
      points <- c(low[p], psis, up[p])
      right <- c(low[p], points[2:(npsii[p] + 1)] + agg[pos[[p]]][order(psi0[pos[[p]]])] * (points[3:(npsii[p] + 2)] - points[2:(npsii[p] + 1)]), NA)
      left <- c(NA, points[2:(npsii[p] + 1)] - agg[pos[[p]]][order(psi0[pos[[p]]])] * (points[2:(npsii[p] + 1)] - points[1:npsii[p]]), up[p])
      #if(any(is.na(left))| any(is.na(right))) stop(paste("too many breaks for step term #", p, "?"), call.=TRUE)
      for (j in 1:(npsii[p] + 1)) {
        xx.j <- xx[,p][gruppi == j]
        xx[,p][gruppi == j] <- right[j] + (xx.j - points[j]) * 
          ((left[j + 1] - right[j])/(points[j + 1] - points[j]))
      }
    }
    
    XX<-toMatrix(xx, npsii)
    PSI<- matrix(psi0, n, npsi, byrow = TRUE)
    W <- (1/(2 * abs(XX - PSI)))
    Z <- (XX * W + 1/2)
    XREG <- cbind(x.lin, Z, W)
    
    #obj<-try(mylm(XREG,y,w=ww,offs=offs), silent = TRUE)
    #if(class(obj)[1]=="try-error") 
    #  obj <- lm.wfit(y = y, x = XREG, offset = offs, w=ww )
    #b <- obj$coef[(2:(sum(k) + 1))]
    #g <- obj$coef[((sum(k) + 2):(2 * sum(k) + 1))]
    obj <- suppressWarnings(glm.fit(x = XREG, y = y, offset = offs,
                                     weights = ww, family = fam, control = glm.control(maxit = maxit.glm1[i]), etastart = eta0)) 
      
      
    
    #idZ<-(plin+1):(plin+ncol(Z))
    #idW<-(plin+ncol(Z)+1): ( plin+ncol(Z)+ncol(W))
    b<- obj$coef[idZ]
    g<- obj$coef[idW]
    
    if(any(is.na(c(b, g)))){
      if(return.all.sol) return(list(dev.values, psi.values)) else stop("breakpoint estimate too close or at the boundary causing NA estimates.. too many breakpoints being estimated?", call.=FALSE)
    }
    
    psi1 <- -g/b
    psi1<- psi0+ opz$h*(psi1-psi0)
    #aggiusta la stima di psi..
    psi1<- adj.psi(psi1, limZ)
    psi1<-unlist(tapply(psi1, opz$id.psi.group, sort), use.names =FALSE)
    
    #if(i==1) browser()
    #la f e' chiaramente a gradino per cui meglio dividere..
     a0<-optimize(search.min, c(0,.5), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, tol=tolOp[i])
     a1<-optimize(search.min, c(.5,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, tol=tolOp[i])
     a <-if(a0$objective<=a1$objective) a0 else a1
     
     
     
     #a0<-optimize(search.min, c(0,.33), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
     #a1<-optimize(search.min, c(.33,.66), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
     #a2<-optimize(search.min, c(.66,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
     #a<-if(a2$objective<=a$objective) a2 else a
    
    if(a$objective<L0){
      k.values[length(k.values) + 1] <- use.k <- a$minimum
      L1<- a$objective
      eta0<- attr(a$objective, "eta")
    } else {
      k.values[length(k.values) + 1] <- use.k <- 0
      L1<- L0  
    }
     
    if(use.k<=.01){
      k.List<-j.List<-NULL
     for(j in 1:length(psi1)){
       a0<-optimize(search.min, c(0,.5), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, id.fix.psi=j, tol=tolOp[i])
       a1<-optimize(search.min, c(.5,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs, id.fix.psi=j, tol=tolOp[i])
       a <-if(a0$objective<=a1$objective) a0 else a1
       if(a$objective<L1){
         j.List[[j]]<-setdiff(1:length(psi1),j) #indici di psi che devono cambiare..
         k.List[[j]]<-a$minimum
       } else {
         j.List[[j]]<-NA
         k.List[[j]]<-NA
         
       }
     }
      id.to.be.changed<- unique(unlist(j.List[!sapply(k.List, is.na)]))
      if(!is.null(id.to.be.changed)){
        use.k<-rep(0,length(psi1))
        use.k[id.to.be.changed] <-mean(unlist(k.List[!sapply(k.List, is.na)]))
        psi1 <- psi1*use.k + psi0* (1-use.k)
        use.k<-mean(use.k)
        L1=search.min(1, psi=psi1, psi.old=psi0, X=x.lin, y=y, w=ww, offs=offs)
      } else {
        psi1<-psi0
      }
    } else {
      psi1 <- psi1*use.k + psi0* (1-use.k)
    }
     

    if (!is.null(digits)) psi1 <- round(psi1, digits)
    #PSI1 <- matrix(psi1, n, npsi, byrow = TRUE)
    #XREG1 <- cbind(x.lin, Xtrue>PSI1)
    #obj1 <- try(mylm(XREG1, y, ww, offs), silent = TRUE)
    #if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(XREG1, y, ww, offs), silent = TRUE)
    delta<- psi1-psi0
    
    if (display) {
      flush.console()
      #n.intDev0<-nchar(strsplit(as.character(dev.values[2]),"\\.")[[1]][1])
      unlpsi<- unlist(psi1)
      Lp<-length(unlpsi)
      
      cat(paste("iter = ", sprintf("%2.0f",i),
                #"  dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg" 
                "  dev = ",  sprintf("%1.5f", as.numeric(strsplit(format(L1, scientific=TRUE), "e")[[1]][1])),
                "  k = ", sprintf("%2.3f", use.k),
                "  n.psi = ",formatC(Lp,digits=0,format="f"), 
                "  est.psi = ",paste(formatC(unlpsi[1:min(Lp,5)],digits=3,format="f"), collapse="  "), #sprintf('%.2f',x)
                sep=""), "\n")
    }
    
    epsilon <- (L0 - L1)/(abs(L0) + 0.1) 
    L0<-L1
    
    k.values[length(k.values)+1]<-use.k
    psi.values[[length(psi.values) + 1]] <- psi1
    dev.values[length(dev.values) + 1] <- L0
    
    if (i >= it.max) {
      id.warn <- TRUE
      break
    }
    psi0<-psi1
  } #end while_it
  
  #browser()
  psi1 <-unlist(tapply(psi1, opz$id.psi.group, sort))
  PSI<- matrix(psi1, n, npsi, byrow = TRUE)
  U <- 1*(Xtrue>PSI)
  
  #ATTENZIONE .. Assume che obj sia stato stimato sempre!
  obj<-list(obj=obj, psi=psi1, psi.values=psi.values, rangeZ=rangeZ, SumSquares.no.gap=L1, 
            beta.c=b, it=i, epsilon=epsilon, id.warn=id.warn, U=U, eta0=eta0) 
  return(obj)
} #end jump.fit