File: step.ts.fit.boot.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (222 lines) | stat: -rw-r--r-- 8,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
step.ts.fit.boot <- function(y, XREG, Z, PSI, opz, n.boot=10, size.boot=NULL, jt=FALSE,
                          nonParam=TRUE, random=FALSE, break.boot=n.boot){
  #random se TRUE prende valori random quando e' errore: comunque devi modificare qualcosa (magari con it.max)
  #     per fare restituire la dev in corrispondenza del punto psi-random
  #nonParm. se TRUE implemneta il case resampling. Quello semiparam dipende dal non-errore di
  #----------------------------------
  #  sum.of.squares<-function(obj.seg){
  #      #computes the "correct" SumOfSquares from a segmented" fit
  #      b<-obj.seg$obj$coef
  #      X<-qr.X(obj.seg$obj$qr) #X<-model.matrix(obj.seg)
  #      X<-X[,!is.na(b)]
  #      b<-b[!is.na(b)]
  #      rev.b<-rev(b)
  #      rev.b[1:length(obj.seg$psi)]<-0
  #      b<-rev(rev.b)
  #      new.fitted<-drop(X%*%b)
  #      new.res<- obj.seg$obj$residuals + obj.seg$obj$fitted - new.fitted
  #      ss<-sum(new.res^2)
  #      ss
  #      }
  adj.psi <- function(psii, LIM) {
    pmin(pmax(LIM[1, ], psii), LIM[2, ])
  }
  
  #--------
  extract.psi<-function(lista){
    #serve per estrarre il miglior psi..
    dev.values<-lista[[1]][-1] #remove the 1st one referring to model without psi
    psi.values<-lista[[2]][-1] #remove the 1st one (NA)
    dev.ok<-min(dev.values)
    id.dev.ok<-which.min(dev.values)
    if(is.list(psi.values))  psi.values<-matrix(unlist(psi.values),
                                                nrow=length(dev.values), byrow=TRUE)
    if(!is.matrix(psi.values)) psi.values<-matrix(psi.values)
    psi.ok<-psi.values[id.dev.ok,]
    r<-list(SumSquares.no.gap=dev.ok, psi=psi.ok)
    r
  }
  
  #browser()
  
  if(is.null(opz$seed)){
    mY <- mean(y)
    sepDec<-if(options()$OutDec==".") "\\." else "\\,"
    vv <- strsplit(paste(strsplit(paste(mY), sepDec)[[1]], collapse=""),"")[[1]]
    vv<-vv[vv!="0"]
    vv=na.omit(vv[1:5])
    seed <-eval(parse(text=paste(vv, collapse="")))
    if(is.null(seed)) seed <- 1
    set.seed(seed)
  } else {
    if(is.na(opz$seed)) {
      seed <-eval(parse(text=paste(sample(0:9, size=6), collapse="")))
      set.seed(seed)
    } else {
      seed <-opz$seed
      set.seed(opz$seed)
    }
  }  
  
  #-------------
  #obj<- jump.fit(y, XREG=x.lin, Z=Xtrue, PSI, w=ww, offs, opz, return.all.sol=FALSE)
  #--------------
  visualBoot<-opz$display
  opz$display<-FALSE
  #opz.boot<-opz
  #opz.boot$pow=c(1,1) #c(1.1,1.2)
  opz1<-opz
  opz1$it.max <- 0
  opz0<-opz
  opz0$agg<-.2
  n<-length(y)
  rangeZ <- apply(Z, 2, range) #serve sempre
  alpha <- opz$alpha
  limZ <- apply(Z, 2, quantile, names = FALSE, probs = alpha)
  o0 <-try(suppressWarnings(step.ts.fit(y, XREG, Z, PSI, opz0, return.all.sol=FALSE)), silent=TRUE)  
  #browser()
  
  if(!is.list(o0)) {
    o0<- suppressWarnings(step.ts.fit(y, XREG, Z, PSI, opz, return.all.sol=TRUE))
    o0<-extract.psi(o0)
    ss00<-opz$dev0
    if(!nonParam) {warning("using nonparametric boot");nonParam<-TRUE}
  }
  if(is.list(o0)){
    est.psi00<-est.psi0<-o0$psi
    ss00<-o0$SumSquares.no.gap
    if(!nonParam) fitted.ok<-fitted(o0)
  } else {
    if(!nonParam) stop("the first fit failed and I cannot extract fitted values for the semipar boot")
    if(random) {
      est.psi00<-est.psi0<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
      PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
      o0<-try(suppressWarnings(step.ts.fit(y, XREG, Z, PSI1, opz1)), silent=TRUE)
      ss00<-o0$SumSquares.no.gap
    } else {
      est.psi00<-est.psi0<-apply(PSI,2,mean)
      ss00<-opz$dev0
    }
  }
  
  n.intDev0<-nchar(strsplit(as.character(ss00),"\\.")[[1]][1])
  
  all.est.psi.boot<-all.selected.psi<-all.est.psi<-matrix(NA, nrow=n.boot, ncol=length(est.psi0))
  all.ss<-all.selected.ss<-rep(NA, n.boot)
  if(is.null(size.boot)) size.boot<-n
  
  Z.orig<-Z
  count.random<-0
  agg.values<-seq(.2,.05,l=n.boot)
  ###INIZIO BOOT
  alpha<-.1
  corr=1.2
  
  #browser()
  n.boot.rev<- 3 #3 o 4?
  for(k in seq(n.boot)){
    #if(k==2) browser()
    #browser()
    
    diff.selected.ss <- rev(diff(na.omit(all.selected.ss)))
    if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){
      qpsi     <- sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i]))
      qpsi.cor <- sapply(1:ncol(Z),function(i)mean((corr*est.psi0[i])>=Z[,i]))
      qpsi <- ifelse(abs(qpsi-.5)<=.2, qpsi.cor, alpha)
      alpha<-1-alpha
      corr<-1/corr
      est.psi0 <- sapply(1:ncol(Z),function(i)quantile(Z[,i], probs=qpsi[i],names=FALSE))
      est.psi0 <- adj.psi(est.psi0, limZ)
      #est.psi0<- jitter(est.psi0, amount=min(diff(est.psi0))) 
    }
    
    ########################### 25/7/24 #####
    est.psi0 <- unlist(tapply(est.psi0, opz$id.psi.group, sort))
    #########################################
    
    PSI <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
    if(jt) Z<-apply(Z.orig,2,jitter)
    if(nonParam){
      id<-sample(n, size=size.boot, replace=TRUE)
      o.boot<-try(suppressWarnings(step.ts.fit(y[id], XREG[id,,drop=FALSE], Z[id,,drop=FALSE], PSI[id,,drop=FALSE],
                                             opz)), silent=TRUE)
    } else {
      yy<-fitted.ok+sample(residuals(o0),size=n, replace=TRUE)
      o.boot<-try(suppressWarnings(step.ts.fit(yy, XREG, Z.orig, PSI, opz)), silent=TRUE)
    }
    if(is.list(o.boot)){
      all.est.psi.boot[k,]<-est.psi.boot<-o.boot$psi
    } else {
      est.psi.boot<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
      est.psi.boot<- unlist(tapply(est.psi.boot, opz$id.psi.group, sort))
    }
    PSI <- matrix(est.psi.boot, n, ncol = length(est.psi.boot), byrow=TRUE)
    #opz$h<-max(opz$h*.9, .2)
    opz$it.max<-opz$it.max+1
    opz$agg<-agg.values[k]
    o <-try(suppressWarnings(step.ts.fit(y, XREG, Z.orig, PSI, opz, return.all.sol=TRUE)), silent=TRUE)
    if(!is.list(o) && random){
      est.psi0<-apply(limZ,2,function(r)runif(1,r[1],r[2]))
      PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0))
      o <-try(suppressWarnings(step.ts.fit(y, XREG, Z, PSI1, opz1)), silent=TRUE)
      count.random<-count.random+1
    }
    #se il modello e' stato stimato controlla se la soluzione e' migliore..
    if(is.list(o)){
      if(!"coefficients"%in%names(o$obj)) o<-extract.psi(o)
      all.est.psi[k,]<-o$psi
      all.ss[k]<-o$SumSquares.no.gap
      if(o$SumSquares.no.gap<=ifelse(is.list(o0), o0$SumSquares.no.gap, 10^12)) o0<-o
      est.psi0<-o0$psi
      all.selected.psi[k,] <- est.psi0
      all.selected.ss[k]<-o0$SumSquares.no.gap #min(c(o$SumSquares.no.gap, o0$SumSquares.no.gap))
    }
    
    
    if (visualBoot) {
      flush.console()
      #      spp <- if (it < 10) " " else NULL
      #      cat(paste("iter = ", spp, it,
      #                "  dev = ",sprintf('%8.5f',L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
      #n.intDev0<-nchar(strsplit(as.character(dev.values[2]),"\\.")[[1]][1])
      unlpsi<- unlist(est.psi0)
      Lp<-length(unlpsi)
      cat(paste("boot sample = ", sprintf("%2.0f",k),
                "  opt.dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), o0$SumSquares.no.gap), #formatC(L1,width=8, digits=5,format="f"), #era format="fg" 
                "  n.psi = ",formatC(Lp,digits=0,format="f"), 
                "  est.psi = ",paste(formatC(unlpsi[1:min(Lp,5)],digits=3,format="f"), collapse="  "), #sprintf('%.2f',x)
                sep=""), "\n")
    }
    #conta i valori ss uguali.. cosi puoi fermarti prima..
    asss<-na.omit(all.selected.ss)
    if(length(asss)>break.boot){
      if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break
    }
  } #end n.boot
  
  all.selected.psi<-rbind(est.psi00,all.selected.psi)
  all.selected.ss<-c(ss00, all.selected.ss)
  
  #SS.ok<-min(all.selected.ss)
  #id.accept<- ((abs(all.ss-SS.ok)/SS.ok )<= 0.05)
  #psi.mean<-apply(all.est.psi[id.accept,,drop=FALSE], 2, mean)
  #est.psi0<-psi.mean
  # #devi ristimare il modello con psi.mean
  # PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0))
  # o0<-try(seg.lm.fit(y, XREG, Z, PSI1, w, offs, opz1), silent=TRUE)
  
  
  
  ris<-list(all.selected.psi=drop(all.selected.psi),all.selected.ss=all.selected.ss, all.psi=all.est.psi, all.ss=all.ss)
  
  if(is.null(o0$obj)){
    PSI1 <- matrix(est.psi0, n, ncol = length(est.psi0), byrow=TRUE)
    o0 <- try(step.ts.fit(y, XREG, Z, PSI1, opz1), silent=TRUE)
    warning("The final fit can be unreliable (possibly mispecified segmented relationship)", call.=FALSE, immediate.=TRUE)
  }
  if(!is.list(o0)) return(0)
  o0$boot.restart<-ris
  o0$seed<-seed
  #rm(.Random.seed, envir=globalenv())
  return(o0)
}