File: step.ts.fit.r

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (265 lines) | stat: -rw-r--r-- 10,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
step.ts.fit<-function(y, x.lin, Xtrue, PSI, opz, return.all.sol=FALSE){  
  #----------------------
  search.min<-function(h, psi, psi.old, X, y, id.fix.psi=NULL) {
    psi.ok<- psi*h + psi.old*(1-h)
    psi.ok[id.fix.psi]<- psi.old[id.fix.psi]
    PSI <- matrix(psi.ok, n, ncol = length(psi.ok), byrow=TRUE)
    U1 <- (Xtrue>PSI) #(Z - PSI) * (Z > PSI)
    #if (pow[1] != 1) U1 <- U1^pow[1]
    obj1 <- try(mylm(cbind(X, U1), y), silent = TRUE)
    #if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(cbind(X, U1), y, w, offs), silent = TRUE)
    #if (class(obj1)[1] == "try-error") obj1 <- try(.lm.fit(cbind(X, U1), y), silent = TRUE)
    L1 <- if (class(obj1)[1] == "try-error") L0 + 10 else obj1$L0
    #r<-sum(obj1$residuals^2 * w)
    L1
  }
  toMatrix<-function(.x, ki){
    # ripete ogni .x[,j] ki[j] volte
    if(ncol(.x)!=length(ki)) stop("It should be ncol(.x)==length(ki)")
    if(all(ki==1)) return(.x)
    M<-vector("list", length=length(ki))
    for(j in 1:length(ki)) M[[j]]<-replicate(ki[[j]], cbind(.x[,j]), simplify=TRUE)
    do.call(cbind, M)
  }
  ### -----
  mylm <-function(x,y){ #,w=1,offs=0 in step.st.fit() non ci sovrebbero essere w e offs
    #x1<-x*sqrt(w)
    #y<-y-offs
    #y1<-y*sqrt(w)
    #o<-.lm.fit(y=y,x=x)
    #b<-o$coefficients
    #fit<- o$fitted.values
    #r<-o$residuals
    b<-drop(solve(crossprod(x),crossprod(x,y))) #x<-x1
    #b<-solve(crossprod(x),crossprod(x,y))
    #browser()
    #fit<- drop(tcrossprod(x,t(b)))
    fit<- drop(x%*%b)
    r<-y-fit
    o<-list(coefficients=b, fitted.values=fit, residuals=r, L0=sum(r^2), df.residual=length(y)-length(b))
    o
  }
  ### -----
  isZero <- function(v) sapply(v, function(.x) identical(.x,0))
  ###------
  #-----------
  adj.psi <- function(psii, LIM) {
    pmin(pmax(LIM[1, ], psii), LIM[2, ])
  }
  
  #------------
  tol<-opz$toll
  display<-opz$display
  it.max<-opz$it.max
  dev0<-opz$dev0
  #useExp.k<-opz$useExp.k
  #min.step<- opz$min.step #=.0001
  #conv.psi<-opz$conv.psi #=FALSE
  alpha<-opz$alpha
  #browser()
  limZ <- apply(Xtrue, 2, quantile, names = FALSE, probs = c(alpha[1], alpha[2]))
  #limZ <- apply(Xtrue, 2, quantile, names = FALSE, probs = c(alpha, 1 - alpha))
  
  fix.npsi<-opz$fix.npsi
  agg<-opz$agg
  h<-opz$h
  npsii<-opz$npsii
  npsi<- sum(npsii) #opz$npsi
  P<-length(npsii) #P<-opz$P
  digits<-opz$digits
  rangeZ<-opz$rangeZ
  
  #  pos.vec <- 1:npsi
  #  pos <- vector("list", P)
  #  ind <- 0
  pos<- tapply(1:npsi, rep(1:P, npsii), list)
  i <- 0
  agg <- rep(agg, npsi)
  #browser()
  #  direz <- matrix(NA, it.max, npsi)
  #  conv <- rep(FALSE, npsi)
  #  ind.conv <- NULL
  n<-length(y)
  plin<-ncol(x.lin)
  epsilon<-10
  k.values<-dev.values<- NULL
  psi.values <-list()
  
  dev.values[length(dev.values) + 1] <- opz$dev0 #modello senza psi 
  psi.values[[length(psi.values) + 1]] <- NA
  #PSI0<- matrix(psi0, n, npsi, byrow = TRUE)
  #XREG <- cbind(x.lin, Xtrue>PSI)
  #obj0 <- .lm.fit(x=XREG, y=y) #try(mylm(XREG, y), silent = TRUE) 
  #L0 <- sum(obj0$residuals^2) #*ww
  
  if(it.max==0){
    obj <- lm.wfit(x = cbind(x.lin, Xtrue>PSI), y = y)
    L1 <- sum(obj$residuals^2)
    obj$epsilon <- epsilon
    idZ<-(plin+1):(plin+ncol(PSI))
    b<- obj$coef[idZ]
    obj <- list(obj = obj, psi = PSI[1,], psi.values = psi.values, 
                rangeZ = rangeZ, beta.c=b, epsilon = epsilon,  
                SumSquares.no.gap = L1,  
                id.warn = TRUE)
    return(obj)
  }
  
  L0<- mylm(cbind(x.lin, Xtrue>PSI),y)$L0 # valore con psi iniziale
  
  n.intDev0<-nchar(strsplit(as.character(L0),"\\.")[[1]][1])
  dev.values[length(dev.values) + 1] <- L0 #modello con psi iniziali
  psi0<-PSI[1,]
  psi.values[[length(psi.values) + 1]] <- psi0 #psi iniziali
  #==============================================
  if (display) {
    unlpsi<- unlist(psi0)
    Lp<-length(unlpsi)
    
    cat(paste("iter = ", sprintf("%2.0f",0),
              #"  dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L0), #formatC(L1,width=8, digits=5,format="f"), #era format="fg" 
              "  dev = ",  sprintf("%1.5f", as.numeric(strsplit(format(L0, scientific=TRUE), "e")[[1]][1])),
              "  k = ", sprintf("%5.0f", NA),
              "  n.psi = ",formatC(Lp, digits=0,format="f"), 
              "  ini.psi = ",paste(formatC(unlpsi[1:min(5,Lp)],digits=3,format="f"), collapse="  "), #sprintf('%.2f',x)
              sep=""), "\n")
  }
  id.warn <- FALSE
  low <- apply(Xtrue, 2, min)
  up <- apply(Xtrue, 2, max)
  
  #L1<-L0+10  
  tolOp<-if(is.null(opz$tol.opt)) seq(.001, .Machine$double.eps^0.25, l=it.max) else rep(opz$tol.opt, it.max)
  idZ<-(plin+1):(plin+ncol(PSI))
  idW<-(plin+ncol(PSI)+1): ( plin+2*ncol(PSI))
  
  #==============================================
  while (abs(epsilon) > tol) {
    i <- i + 1
    #if(i==1) browser()
    xx <- Xtrue[,cumsum(npsii),drop=FALSE]
    for (p in 1:P) {
      psis <- sort(psi0[pos[[p]]])
      gruppi <- cut(xx[,p], breaks = c(low[p] - 0.1, psis, up[p]), labels = FALSE)
      if(any(is.na(gruppi))) stop(paste("too many breaks for step term #", p, "?"), call.=TRUE)
      points <- c(low[p], psis, up[p])
      right <- c(low[p], points[2:(npsii[p] + 1)] + agg[pos[[p]]][order(psi0[pos[[p]]])] * (points[3:(npsii[p] + 2)] - points[2:(npsii[p] + 1)]), NA)
      left <- c(NA, points[2:(npsii[p] + 1)] - agg[pos[[p]]][order(psi0[pos[[p]]])] * (points[2:(npsii[p] + 1)] - points[1:npsii[p]]), up[p])
      for (j in 1:(npsii[p] + 1)) {
        xx.j <- xx[,p][gruppi == j]
        xx[,p][gruppi == j] <- right[j] + (xx.j - points[j]) * 
          ((left[j + 1] - right[j])/(points[j + 1] - points[j]))
      }
    }
    
    XX<-toMatrix(xx, npsii)
    PSI<- matrix(psi0, n, npsi, byrow = TRUE)
    W <- (1/(2 * abs(XX - PSI)))
    Z <- (XX * W + 1/2)
    XREG <- cbind(x.lin, Z, W)
    
    #obj<-try(mylm(XREG,y,w=ww,offs=offs), silent = TRUE)
    #if(class(obj)[1]=="try-error") 
    obj <- .lm.fit(y = y, x = XREG) #obj <- lm.wfit(y = y, x = XREG, offset = offs, w=ww )
    #b <- obj$coef[(2:(sum(k) + 1))]
    #g <- obj$coef[((sum(k) + 2):(2 * sum(k) + 1))]
    
    b<- obj$coef[idZ]
    g<- obj$coef[idW]
    
    #if(any(is.na(c(b, g)))){
    if(any(isZero(c(b, g)))) {
      if(return.all.sol) return(list(dev.values, psi.values)) else stop("breakpoint estimate too close or at the boundary causing NA estimates.. too many breakpoints being estimated?", call.=FALSE)
    }
    psi1 <- -g/b
    psi1<- psi0+ h*(psi1-psi0)
    psi1<- adj.psi(psi1, limZ) #limZ rangeZ
    psi1<-unlist(tapply(psi1, opz$id.psi.group, sort), use.names =FALSE)
    #la f e' chiaramente a gradino per cui meglio dividere..
    a0<-optimize(search.min, c(0,.5), psi=psi1, psi.old=psi0, X=x.lin, y=y, tol=tolOp[i])
    a1<-optimize(search.min, c(.5,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, tol=tolOp[i])
    a<-if(a0$objective<=a1$objective) a0 else a1
    
    if(a$objective<L0){
      k.values[length(k.values) + 1] <- use.k <- a$minimum
      L1<- a$objective
    } else {
      k.values[length(k.values) + 1] <- use.k <- 0
      L1<- L0  
    }
    
    if(use.k<=.01){
      k.List<-j.List<-NULL
      for(j in 1:length(psi1)){
        a0<-optimize(search.min, c(0,.5), psi=psi1, psi.old=psi0, X=x.lin, y=y, id.fix.psi=j, tol=tolOp[i])
        a1<-optimize(search.min, c(.5,1), psi=psi1, psi.old=psi0, X=x.lin, y=y, id.fix.psi=j, tol=tolOp[i])
        a <-if(a0$objective<=a1$objective) a0 else a1
        if(a$objective<L1){
          j.List[[j]]<-setdiff(1:length(psi1),j) #indici di psi che devono cambiare..
          k.List[[j]]<-a$minimum
        } else {
          j.List[[j]]<-NA
          k.List[[j]]<-NA
          
        }
      }
      id.to.be.changed<- unique(unlist(j.List[!sapply(k.List, is.na)]))
      if(!is.null(id.to.be.changed)){
        use.k<-rep(0,length(psi1))
        use.k[id.to.be.changed] <-mean(unlist(k.List[!sapply(k.List, is.na)]))
        psi1 <- psi1*use.k + psi0* (1-use.k)
        use.k<-mean(use.k)
        L1=search.min(1, psi=psi1, psi.old=psi0, X=x.lin, y=y)
      } else {
        psi1<-psi0
      }
    } else {
      psi1 <- psi1*use.k + psi0* (1-use.k)
    }
    
    
    
    
    if (!is.null(digits)) psi1 <- round(psi1, digits)
    #PSI1 <- matrix(psi1, n, npsi, byrow = TRUE)
    #XREG1 <- cbind(x.lin, Xtrue>PSI1)
    #obj1 <- try(mylm(XREG1, y, ww, offs), silent = TRUE)
    #if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(XREG1, y, ww, offs), silent = TRUE)
    delta<- psi1-psi0
    
    if (display) {
      flush.console()
      #n.intDev0<-nchar(strsplit(as.character(dev.values[2]),"\\.")[[1]][1])
      unlpsi<- unlist(psi1)
      Lp<-length(unlpsi)
      cat(paste("iter = ", sprintf("%2.0f",i),
                #"  dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg" 
                "  dev = ",  sprintf("%1.5f", as.numeric(strsplit(format(L1, scientific=TRUE), "e")[[1]][1])),
                "  k = ", sprintf("%2.3f", use.k),
                "  n.psi = ",formatC(Lp, digits=0, format="f"), 
                "  est.psi = ",paste(formatC(unlpsi[1:min(Lp,5)],digits=3,format="f"), collapse="  "), #sprintf('%.2f',x)
                sep=""), "\n")
    }
    
    epsilon <- (L0 - L1)/(abs(L0) + 0.1) 
    L0<-L1
    
    k.values[length(k.values)+1]<-use.k
    psi.values[[length(psi.values) + 1]] <- psi1
    dev.values[length(dev.values) + 1] <- L0
    
    if (i >= it.max) {
      id.warn <- TRUE
      break
    }
    psi0<-psi1
  } #end while_it
  psi1 <-unlist(tapply(psi1, opz$id.psi.group, sort))
  PSI<- matrix(psi1, n, npsi, byrow = TRUE)
  U <- 1*(Xtrue>PSI)
  
  #ATTENZIONE .. Assume che obj sia stato stimato sempre!
  obj<-list(obj=obj, psi=psi1, psi.values=psi.values, rangeZ=rangeZ, SumSquares.no.gap=L1, beta.c=b, 
              it=i, epsilon=epsilon, id.warn=id.warn, U=U) 
  return(obj)
} #end jump.fit