File: summary.stepmented.R

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (131 lines) | stat: -rw-r--r-- 6,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
`summary.stepmented` <-
function(object, short=FALSE, var.diff=FALSE, p.df="p", .vcov=NULL, ...){
    
    if(!is.null(.vcov)) var.diff<-FALSE
    if(var.diff && length(object$nameUV$Z)>1) {
      var.diff<-FALSE
      warning(" 'var.diff' set to FALSE with multiple segmented variables", call.=FALSE)
      }
    
    #browser()
    
    nomiU<-object$nameUV$U
    nomiV<-object$nameUV$V
    nomiPsi<- sub("V", "psi", nomiV)
    idU <-match(nomiU,names(coef(object)[!is.na(coef(object))]))
    idV <-match(nomiPsi,names(coef(object)[!is.na(coef(object))]))
    #beta.c<- coef(object)[nomiU]
    #per metodo default.. ma serve????
    if("stepmented.default" == as.character(object$call)[1]){
      summ <- c(summary(object, ...), object["psi"])
      summ[c("it","epsilon")]<-object[c("it","epsilon")]
      #v<-try(vcov(object), silent=TRUE)
      #if(class(v)!="try-error") v<-sqrt(diag(v))
      return(summ)
    }
    #browser()
    
    VAR <- if(!is.null(.vcov)) .vcov else vcov(object,...)
    se <- sqrt(diag(VAR))
    object$psi[,"St.Err"] <- se[nomiPsi] 
    
    #if("lm"%in%class(object) && !"glm"%in%class(object)){
    if(inherits(object, "lm") && !inherits(object, "glm")){
      #object$rank include i psi, mentre object$qr$rank no.
      #Affinche' summary.lm() funzioni, e' necessario che object$rank non tenga conto del numero di psi..
      #quindi qua (e anche nei lm sopra) modifichiamo il valore di rank..
      #NB: questo problema NON si presenta se sono state usate le funzioni stepmented.* in cui anche object$qr$rank tiene gia' conto
      # dei psi (perche' hanno stimato il modello con le variabili W per cercare di ottenere una qualche misura del se)
      object$rank <- object$qr$rank #object$rank - nrow(object$psi)
      # summ <- c(suppressWarnings(summary.lm(object, ...)), object["psi"])
      # summ$Ttable <-summ$coefficients
      # b <- coef(object, FALSE)
      # b<-b[b!=0]
      # summ <- list(Ttable=matrix(NA, length(b), 4, dimnames = list(names(b),c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))),
      #              psi=object[["psi"]], sigma=sigma(object), call=object$call, df=c(length(coef(object)), object$df.residual, length(coef(object)) ) )
      # summ$Ttable[,"Estimate"] <- b 
      # summ$Ttable[,"Std. Error"] <- se[1:length(b)] #se[rownames(summ$coefficients)]
      # summ$Ttable[,"t value"] <- summ$Ttable[,"Estimate"]/summ$Ttable[,"Std. Error"] 
      # summ$Ttable[,"Pr(>|t|)"] <- 2*pt(abs(summ$Ttable[,"t value"]), df=object$df.residual, lower.tail = FALSE) # summ$Ttable[,"Estimate"]/summ$Ttable[,"Std. Error"]
      
      summ <- c(suppressWarnings(summary.lm(object, ...)), object["psi"])
      summ$Ttable <- summ$coefficients
      summ$Ttable[, "Std. Error"] <- se[rownames(summ$coefficients)]
      summ$Ttable[, "t value"] <- summ$Ttable[, "Estimate"]/summ$Ttable[,"Std. Error"]
      summ$Ttable[, "Pr(>|t|)"] <- 2 * pt(abs(summ$Ttable[,"t value"]), df = object$df.residual, lower.tail = FALSE)
      
      
      if(var.diff){
        stop("not allowed")
        # modifica gli SE
        Qr <- object$qr
        p <- object$rank #n.parametri stimati
        p1 <- 1L:p
        inv.XtX <- chol2inv(Qr$qr[p1, p1, drop = FALSE])
        X <- qr.X(Qr,FALSE) 
        attr(X, "assign") <- NULL
        K<-length(unique(object$id.group)) #n.gruppi (=n.psi+1)
        dev.new<-tapply(object$residuals, object$id.group, function(.x){sum(.x^2)})
        summ$df.new<-tapply(object$residuals, object$id.group, function(.x){(length(.x)-eval(parse(text=p.df)))})
        if(any(summ$df.new<=0)) stop("nonpositive df when computig the group-specific variances.. reduce 'p.df'?", call. = FALSE)
        summ$sigma.new<-sqrt(dev.new/summ$df.new)
        sigma.i<-rowSums(model.matrix(~0+factor(object$id.group))%*%diag(summ$sigma.new))
        var.b<-inv.XtX%*%crossprod(X*sigma.i)%*%inv.XtX #sqrt(rowSums((X %*% V) * X))
        dimnames(var.b)<-dimnames(summ$cov.unscaled)
        summ$cov.var.diff<-var.b
        summ$Ttable[,2]<-sqrt(diag(var.b))
        summ$Ttable[,3]<-summ$Ttable[,1]/summ$Ttable[,2]
        summ$Ttable[,4]<- 2 * pt(abs(summ$Ttable[,3]),df=object$df.residual, lower.tail = FALSE)
        dimnames(summ$Ttable) <- list(names(object$coefficients)[Qr$pivot[p1]],
              c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))
      }
      summ$Ttable[idU,4]<-NA
      if(all(!is.na(idV))) summ$Ttable<-summ$Ttable[-idV,] 
      summ[c("it","epsilon","conv.warn")]<-object[c("it","epsilon","id.warn")]
      summ$n.boot<-length(na.omit(object$psi.history$all.ss))
      summ$var.diff<-var.diff
      summ$short<-short
      summ$psi.rounded <- object$psi.rounded
      class(summ) <- c("summary.stepmented", "summary.lm")
      return(summ)
    }
    if(inherits(object, "glm")){
      #browser()
      #23/4/24 mi sono reso conto che con gaussian GLM viene stampato "t-value" e non z-value... 
      #     Per cui piuttostoche i nomi, metto gli indici delle colonne..
      object$rank <- object$qr$rank
      summ <- c(suppressWarnings(summary.glm(object, ...)), object["psi"])
      summ$Ttable <-summ$coefficients
      summ$Ttable[,"Std. Error"] <- se[rownames(summ$coefficients)]
      # summ$Ttable[,"z value"] <- summ$Ttable[,"Estimate"]/summ$Ttable[,"Std. Error"] 
      # summ$Ttable[,"Pr(>|z|)"] <- 2*pnorm(abs(summ$Ttable[,"z value"]), lower.tail = FALSE) # summ$Ttable[,"Estimate"]/summ$Ttable[,"Std. Error"]
      summ$Ttable[,3] <- summ$Ttable[,"Estimate"]/summ$Ttable[,"Std. Error"] 
      summ$Ttable[,4] <- if(object$family$family=="gaussian") 2*pt(abs(summ$Ttable[,3]), df=object$df.residual, lower.tail = FALSE) else 2*pnorm(abs(summ$Ttable[,3]), lower.tail = FALSE) # summ$Ttable[,"Estimate"]/summ$Ttable[,"Std. Error"]
      
      summ$Ttable[idU,4]<-NA
      if(all(!is.na(idV))) summ$Ttable<-summ$Ttable[-idV,] 
      summ[c("it","epsilon","conv.warn")]<-object[c("it","epsilon","id.warn")]
      summ$n.boot<-length(na.omit(object$psi.history$all.ss))
      summ$short<-short
      summ$psi.rounded <- object$psi.rounded
      class(summ) <- c("summary.stepmented", "summary.glm")
      return(summ)
    }
    if("Arima"%in%class(object)){
      stop("stepmented arima model not allowed")
      #da controllare
      coeff<-object$coef
      v<-sqrt(diag(object$var.coef))
      Ttable<-cbind(coeff[-idV],v[-idV],coeff[-idV]/v[-idV])
      colnames(Ttable)<-c("Estimate","Std. Error","t value")
      object$Ttable<-Ttable
      object$short<-short
      summ<-object
      summ[c("it","epsilon","conv.warn")]<-object[c("it","epsilon","id.warn")]
      summ$n.boot<-length(na.omit(object$psi.history$all.ss))
      summ$psi.rounded <- object$psi.rounded
      class(summ) <- c("summary.stepmented", "summary.Arima")
      return(summ)
    }
}