1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
vcov.stepmented<-function(object, k=NULL, zero.cor=TRUE, type=c("cdf", "none", "abs"), ...){
#farlo su scala logit???
#k=-1/2.. conservativi
#k=-2/3.. ok, ma forse troppo piccoli..
#================
# U.ef<-U.pert<-matrix(, B, p)
# if(!missing(seed)) set.seed(seed)
# for(i in 1:B){
# id<-sample(n, replace=TRUE)
# U.ef[i,]<-colSums(U[id,]) #EF boot
# w<-rgamma(n,1,1) #o anche rnorm(n,1,1)
# U.pert[i,]<-colSums(U*w)
# }
# I1<-var(U.ef)
# I2<-var(U.pert)
# s2<-sum(o$residuals^2)/(n-p)
# r<-list(teor= s2*crossprod(X), emp=crossprod(U), ef=I1,pert=I2)
#browser()
if(!inherits(object, "lm")) stop("A stepmented (g)lm is requested")
#calcola il parametro di disp che serve sempre..
if(inherits(object, "glm")){
disp <- object$deviance/object$df.residual
if(object$family$family %in% c("binomial","poisson")) disp <-1
} else {
ww <- if(is.null(object$weights)) 1 else object$weights
disp <- sum(ww*object$residuals^2)/object$df.residual
}
#browser()
type<-match.arg(type)
if(type=="abs") stop("type='abs' not (yet?) implemented")
b<-coef.stepmented(object, FALSE)
b <- b[b!=0]
pLin<-length(b)
if(type=="none"){
V<-if(is.null(object$obj.ok)) chol2inv(object$qr$qr[1:pLin, 1:pLin, drop = FALSE]) else object$obj.ok$invXtX
#ok anche in presenza di pesi va bene!
V<- V*disp
#browser()
colnames(V)<-rownames(V)<- names(b)
return(V)
}
#=====================================================
#X0 deve avere le variabili I(x>psi). Se object e' restituito da segreg allora model.matrix.stepmented(object, apprx = "no")
#funziona, se restituito da stepmented no. Allora e' meglio mettere
#X0<- model.matrix.stepmented(object, apprx = "no") #funziona solo con oggetti stepreg
#browser()
X0<- model.matrix.stepmented(object, type = "cdf", k=-100)[,1:pLin]
X <- model.matrix.stepmented(object, type = type, k=k) #qr.X(object$qr) piu efficiente?
X0 <- cbind(X0, X[,setdiff(1:ncol(X),1:ncol(X0))]) #aggiungi i termini relativi ai psi
maxZ.list <- attr(X, "rangeZ")
attr(X, "rangeZ")<-NULL
#browser()
p=ncol(X)
n=nrow(X)
nomiZ<- object$nameUV$Z
nomiV<- object$nameUV$V
nomiU<- object$nameUV$U
nomiPsi<- sub("V","psi", nomiV)
id.noV<-setdiff(colnames(X), nomiPsi)
#====================================
#inutile trasf.X(), il lavoro lo fa model.matrix.stepmented
# trasf.X<-function(k){
# #trasforma la matrice del disegno di un modello stepmented.. utile per il calcolo della vcov
# maxZ.list<-NULL
# for(i in 1:length(nomiU)){
# nomeZ<- gsub("U[1-9].","",nomiU[i])
# Z<-object$Z[,nomeZ]
# minZ<-min(Z)
# maxZ<-max(Z)
# psi<-object$psi[nomiPsi[i],"Est."]
# Z<- (Z-minZ)/(maxZ-minZ)
# psi<- (psi-minZ)/(maxZ-minZ)
# if(is.null(k)){
# idU<-match(nomiU[i],nomiU)
# snr.idU<-abs(object$coefficients[nomiU][idU])/sigma
# ss=n^(-(.6 + .3* log(snr.idU) -abs(psi-.5)^.5/sqrt(n)))
# #ss=n^(-(.6 + .07* log(snr.idU)*log10(n) -abs(psi-.5)^.5/sqrt(n)))
# #.6 + .3* log(o$coefficients[2]/s) -abs(o$psi[,1]-.5)^.5/sqrt(n) +log(log(log10(n)))/3
# } else {
# ss=n^k
# }
# #browser()
# X0[,nomiU[i]]<- 1*(Z>psi)
# X[,nomiU[i]]<- pnorm((Z-psi)/ss)
# X0[, nomiPsi[i]] <- X[, nomiPsi[i]] <- -(object$coefficients[nomiU[i]]/ss)*dnorm((Z-psi)/ss)
# maxZ.list[[length(maxZ.list)+1]]<-maxZ-minZ
# }
# return(list(X0=X0, X=X, maxZ.list=maxZ.list))
# }
#====================================
#R<-trasf.X(k)
#browser()
#X0<-R$X0
#X<- R$X
if(inherits(object, "glm")){
variance = object$family$variance
linkinv = object$family$linkinv
mu.eta = object$family$mu.eta
eta <- object$linear.predictors
prior.weights=object$prior.weights
mu = linkinv(eta)
varg = variance(mu)
invgprime = mu.eta(eta)
ww<- prior.weights*(invgprime^2/varg) #object$prior.weights*object$weights
# if(only.lin){
# invH<- solve(crossprod(sqrt(ww)*X0[,id.noV,drop=FALSE]))
# U<-X0[,id.noV,drop=FALSE]*(prior.weights*object$residuals*invgprime/varg)
# }
invH<- solve(crossprod(sqrt(ww)*X))
U<-X0*(prior.weights*object$residuals*invgprime/varg)
} else {#se lm
w <- if(is.null(object$weights) || sd(object$weights)==0) 1 else object$weights
# if(only.lin){
# invH<- solve(crossprod(sqrt(w)*X0[,id.noV,drop=FALSE]))
# U<-X0[,id.noV,drop=FALSE]*(w*object$residuals)
# }
#browser()
invH<- solve(crossprod(sqrt(w)*X))
U<-X0*(w*object$residuals)
}
INF<- crossprod(U)
V =invH %*% INF %*% invH
#browser()
# for(i in 1:length(nomiPsi)){
# V[,nomiPsi[i]]<-V[,nomiPsi[i]]*maxZ.list[[i]]
# V[nomiPsi[i],]<-V[nomiPsi[i],]*maxZ.list[[i]]
# }
if(zero.cor) V[nomiPsi, id.noV]<- V[id.noV, nomiPsi] <-0
V
}
|