File: vcov.stepmented.R

package info (click to toggle)
r-cran-segmented 2.1-4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,484 kB
  • sloc: makefile: 2
file content (148 lines) | stat: -rw-r--r-- 5,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
vcov.stepmented<-function(object, k=NULL, zero.cor=TRUE, type=c("cdf", "none", "abs"), ...){
  #farlo su scala logit???
  #k=-1/2.. conservativi
  #k=-2/3.. ok, ma forse troppo piccoli..
  #================
  # U.ef<-U.pert<-matrix(, B, p)
  # if(!missing(seed)) set.seed(seed)
  # for(i in 1:B){
  #  id<-sample(n, replace=TRUE)
  #  U.ef[i,]<-colSums(U[id,]) #EF boot
  #  w<-rgamma(n,1,1) #o anche rnorm(n,1,1)
  #  U.pert[i,]<-colSums(U*w)
  # }
  # I1<-var(U.ef)
  # I2<-var(U.pert)
  # s2<-sum(o$residuals^2)/(n-p)
  # r<-list(teor= s2*crossprod(X), emp=crossprod(U), ef=I1,pert=I2)
  
  #browser()
  
  if(!inherits(object, "lm")) stop("A stepmented (g)lm is requested")
  #calcola il parametro di disp che serve sempre..
  if(inherits(object, "glm")){
    disp <- object$deviance/object$df.residual
    if(object$family$family %in% c("binomial","poisson")) disp <-1 
  } else {
    ww <- if(is.null(object$weights)) 1 else object$weights 
    disp <- sum(ww*object$residuals^2)/object$df.residual
  }
  #browser()
  
  type<-match.arg(type)
  if(type=="abs") stop("type='abs' not (yet?) implemented")
  b<-coef.stepmented(object, FALSE)
  b <- b[b!=0]
  pLin<-length(b)
  
  if(type=="none"){
    
    V<-if(is.null(object$obj.ok)) chol2inv(object$qr$qr[1:pLin, 1:pLin, drop = FALSE]) else object$obj.ok$invXtX
    #ok anche in presenza di pesi va bene!
    V<- V*disp
    #browser()
    colnames(V)<-rownames(V)<- names(b)
    return(V)
  }
  #=====================================================
  #X0 deve avere le variabili I(x>psi). Se object e' restituito da segreg allora model.matrix.stepmented(object, apprx = "no")
  #funziona, se restituito da stepmented no. Allora e' meglio mettere
  #X0<- model.matrix.stepmented(object, apprx = "no") #funziona solo con oggetti stepreg
  #browser()
  
  X0<- model.matrix.stepmented(object, type = "cdf", k=-100)[,1:pLin]
  X <- model.matrix.stepmented(object, type = type, k=k) #qr.X(object$qr) piu efficiente?
  
  X0 <- cbind(X0, X[,setdiff(1:ncol(X),1:ncol(X0))]) #aggiungi i termini relativi ai psi
  maxZ.list <- attr(X, "rangeZ") 
  attr(X, "rangeZ")<-NULL
  
  #browser()
  
  p=ncol(X)
  n=nrow(X)
  nomiZ<- object$nameUV$Z
  nomiV<- object$nameUV$V
  nomiU<- object$nameUV$U
  nomiPsi<- sub("V","psi", nomiV)
  id.noV<-setdiff(colnames(X), nomiPsi)
  
  #====================================
  #inutile trasf.X(), il lavoro lo fa model.matrix.stepmented
  # trasf.X<-function(k){
  #   #trasforma la matrice del disegno di un modello stepmented.. utile per il calcolo della vcov
  #   maxZ.list<-NULL
  #   for(i in 1:length(nomiU)){
  #     nomeZ<- gsub("U[1-9].","",nomiU[i])
  #     Z<-object$Z[,nomeZ]
  #     minZ<-min(Z)
  #     maxZ<-max(Z)
  #     psi<-object$psi[nomiPsi[i],"Est."]
  #     Z<- (Z-minZ)/(maxZ-minZ)
  #     psi<- (psi-minZ)/(maxZ-minZ)
  #     if(is.null(k)){
  #       idU<-match(nomiU[i],nomiU)
  #       snr.idU<-abs(object$coefficients[nomiU][idU])/sigma
  #       ss=n^(-(.6 + .3* log(snr.idU) -abs(psi-.5)^.5/sqrt(n)))
  #       #ss=n^(-(.6 + .07* log(snr.idU)*log10(n) -abs(psi-.5)^.5/sqrt(n)))
  #       #.6 + .3* log(o$coefficients[2]/s) -abs(o$psi[,1]-.5)^.5/sqrt(n) +log(log(log10(n)))/3
  #     } else {
  #       ss=n^k
  #     }
  #     #browser()
  #     X0[,nomiU[i]]<- 1*(Z>psi)
  #     X[,nomiU[i]]<- pnorm((Z-psi)/ss)
  #     X0[, nomiPsi[i]] <- X[, nomiPsi[i]] <- -(object$coefficients[nomiU[i]]/ss)*dnorm((Z-psi)/ss)
  #     maxZ.list[[length(maxZ.list)+1]]<-maxZ-minZ
  #   }
  #   return(list(X0=X0, X=X, maxZ.list=maxZ.list))
  # }
  #====================================
  #R<-trasf.X(k)
  #browser()
  
  #X0<-R$X0
  #X<- R$X
  
  if(inherits(object, "glm")){
      variance = object$family$variance
      linkinv = object$family$linkinv
      mu.eta = object$family$mu.eta
      eta <- object$linear.predictors
      prior.weights=object$prior.weights
      mu = linkinv(eta) 
      varg = variance(mu)
      invgprime = mu.eta(eta)
      ww<- prior.weights*(invgprime^2/varg) #object$prior.weights*object$weights
      # if(only.lin){
      #   invH<- solve(crossprod(sqrt(ww)*X0[,id.noV,drop=FALSE]))
      #   U<-X0[,id.noV,drop=FALSE]*(prior.weights*object$residuals*invgprime/varg)
      # } 
      invH<- solve(crossprod(sqrt(ww)*X))
      U<-X0*(prior.weights*object$residuals*invgprime/varg)
    } else {#se lm
      w <- if(is.null(object$weights) || sd(object$weights)==0) 1 else object$weights 
      # if(only.lin){
      #   invH<- solve(crossprod(sqrt(w)*X0[,id.noV,drop=FALSE]))
      #   U<-X0[,id.noV,drop=FALSE]*(w*object$residuals)
      # } 
      #browser()
      invH<- solve(crossprod(sqrt(w)*X))
      U<-X0*(w*object$residuals)
    }
  INF<- crossprod(U)
  V =invH %*% INF %*% invH
  #browser()
  # for(i in 1:length(nomiPsi)){
  #     V[,nomiPsi[i]]<-V[,nomiPsi[i]]*maxZ.list[[i]]
  #     V[nomiPsi[i],]<-V[nomiPsi[i],]*maxZ.list[[i]]
  # }

  if(zero.cor) V[nomiPsi, id.noV]<- V[id.noV, nomiPsi] <-0
  V 
}